154 resultados para Penetrance


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bipolar mood disorder (BP) is a debilitating syndrome characterized by episodes of mania and depression. We designed a multistage study to detect all major loci predisposing to severe BP (termed BP-I) in two pedigrees drawn from the Central Valley of Costa Rica, where the population is largely descended from a few founders in the 16th–18th centuries. We considered only individuals with BP-I as affected and screened the genome for linkage with 473 microsatellite markers. We used a model for linkage analysis that incorporated a high phenocopy rate and a conservative estimate of penetrance. Our goal in this study was not to establish definitive linkage but rather to detect all regions possibly harboring major genes for BP-I in these pedigrees. To facilitate this aim, we evaluated the degree to which markers that were informative in our data set provided coverage of each genome region; we estimate that at least 94% of the genome has been covered, at a predesignated threshold determined through prior linkage simulation analyses. We report here the results of our genome screen for BP-I loci and indicate several regions that merit further study, including segments in 18q, 18p, and 11p, in which suggestive lod scores were observed for two or more contiguous markers. Isolated lod scores that exceeded our thresholds in one or both families also occurred on chromosomes 1, 2, 3, 4, 5, 7, 13, 15, 16, and 17. Interesting regions highlighted in this genome screen will be followed up using linkage disequilibrium (LD) methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The life cycle of angiosperms is punctuated by a dormant phase that separates embryonic and postembryonic development of the sporophyte. In the pickle (pkl) mutant of Arabidopsis, embryonic traits are expressed after germination. The penetrance of the pkl phenotype is strongly enhanced by inhibitors of gibberellin biosynthesis. Map-based cloning of the PKL locus revealed that it encodes a CHD3 protein. CHD3 proteins have been implicated as chromatin-remodeling factors involved in repression of transcription. PKL is necessary for repression of LEC1, a gene implicated as a critical activator of embryo development. We propose that PKL is a component of a gibberellin-modulated developmental switch that functions during germination to prevent reexpression of the embryonic developmental state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A model system for the in vivo control of tumor cell proliferation by the immune system has been used to assay for the possible immunosuppressive activity of retroviral proteins. Expression vectors for the entire or the transmembrane subunit of the Moloney murine leukemia virus envelope protein were constructed, as well as control vectors for irrelevant transmembrane proteins—or no protein. They were introduced either into MCA205 murine tumor cells, which do not proliferate upon s.c. injection into an allogeneic host, or into CL8.1 murine tumor cells, which overexpress class I antigens and are rejected in a syngeneic host. In both cases, expression of the complete envelope protein or of the transmembrane subunit resulted in tumor growth in vivo, with no effect of control vectors. Tumor cell growth results from inhibition of the host immune response, as the envelope-dependent effect was no more observed for MCA205 cells in syngeneic mice or for CL8.1 cells in x-irradiated mice. This inhibition is local because it is not observed at the level of control tumor cells injected contralaterally. These results suggest a noncanonical function of retroviral envelopes in the “penetrance” of viral infections, as well as a possible involvement of the envelope proteins of endogenous retroviruses in tumoral processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acute promyelocytic leukemia (APML) most often is associated with the balanced reciprocal translocation t(15;17) (q22;q11.2) and the expression of both the PML-RARα and RARα-PML fusion cDNAs that are formed by this translocation. In this report, we investigated the biological role of a bcr-3 isoform of RARα-PML for the development of APML in a transgenic mouse model. Expression of RARα-PML alone in the early myeloid cells of transgenic mice did not alter myeloid development or cause APML, but its expression significantly increased the penetrance of APML in mice expressing a bcr-1 isoform of PML-RARα (15% of animals developed APML with PML-RARα alone vs. 57% with both transgenes, P < 0.001). The latency of APML development was not altered substantially by the expression of RARα-PML, suggesting that it does not behave as a classical “second hit” for development of the disease. Leukemias that arose from doubly transgenic mice were less mature than those from PML-RARα transgenic mice, but they both responded to all-trans retinoic acid in vitro. These findings suggest that PML-RARα drives the development of APML and defines its basic phenotype, whereas RARα-PML potentiates this phenotype via mechanisms that are not yet understood.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of two major subdivisions of the vertebrate nervous system, the midbrain and the cerebellum, is controlled by signals emanating from a constriction in the neural primordium called the midbrain/hindbrain organizer (Joyner, A. L. (1996) Trends Genet. 12, 15–201). The closely related transcription factors Pax-2 and Pax-5 exhibit an overlapping expression pattern very early in the developing midbrain/hindbrain junction. Experiments carried out in fish (Krauss, S., Maden, M., Holder, N. & Wilson, S. W. (1992) Nature (London) 360, 87–89) with neutralizing antibodies against Pax-b, the orthologue of Pax-2 in mouse, placed this gene family in an regulatory cascade necessary for the development of the midbrain and the cerebellum. The targeted mutation of Pax-5 has been reported to have only slight effects in the development of structures derived from the isthmic constriction, whereas the Pax-2 null mutant mice show a background-dependent phenotype with varying penetrance. To test a possible redundant function between Pax-2 and Pax-5 we analyzed the brain phenotypes of mice expressing different dosages of both genes. Our results demonstrate a conserved biological function of both proteins in midbrain/hindbrain regionalization. Additionally, we show that one allele of Pax-2, but not Pax-5, is necessary and sufficient for midbrain and cerebellum development in C57BL/6 mice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Type 1 von Willebrand disease (VWD), characterized by reduced levels of plasma von Willebrand factor (VWF), is the most common inherited bleeding disorder in humans. Penetrance of VWD is incomplete, and expression of the bleeding phenotype is highly variable. In addition, plasma VWF levels vary widely among normal individuals. To identify genes that influence VWF level, we analyzed a genetic cross between RIIIS/J and CASA/Rk, two strains of mice that exhibit a 20-fold difference in plasma VWF level. DNA samples from F2 progeny demonstrating either extremely high or extremely low plasma VWF levels were pooled and genotyped for 41 markers spanning the autosomal genome. A novel locus accounting for 63% of the total variance in VWF level was mapped to distal mouse chromosome 11, which is distinct from the murine Vwf locus on chromosome 6. We designated this locus Mvwf for “modifier of VWF.” Additional genotyping of as many as 2407 meioses established a high resolution genetic map with gene order Cola1-Itg3a-Ngfr-Mvwf/Gip-Hoxb9-Hoxb1-Cbx·rs2-Cox5a-Gfap. The Mvwf candidate interval between Ngfr and Hoxb9 is ≈0.5 centimorgan (cM). These results demonstrate that a single dominant gene accounts for the low VWF phenotype of RIIIS/J mice in crosses with several other strains. The pattern of inheritance suggests a gain-of-function mutation in a unique component of VWF biosynthesis or processing. Characterization of the human homologue for Mvwf may have relevance for a subset of type 1 VWD cases and may define an important genetic factor modifying penetrance and expression of mutations at the VWF locus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reduced penetrance in genetic disorders may be either dependent or independent of the genetic background of gene carriers. Hirschsprung disease (HSCR) demonstrates a complex pattern of inheritance with ≈50% of familial cases being heterozygous for mutations in the receptor tyrosine kinase RET. Even when identified, the penetrance of RET mutations is only 50–70%, gender-dependent, and varies with the extent of aganglionosis. We searched for additional susceptibility genes which, in conjunction with RET, lead to phenotypic expression by studying 12 multiplex HSCR families. Haplotype analysis and extensive mutation screening demonstrated three types of families: six families harboring severe RET mutations (group I); and the six remaining families, five of which are RET-linked families with no sequence alterations and one RET-unlinked family (group II). Although the presence of RET mutations in group I families is sufficient to explain HSCR inheritance, a genome scan reveals a new susceptibility locus on 9q31 exclusively in group II families. As such, the gene at 9q31 is a modifier of HSCR penetrance. These observations imply that identification of new susceptibility factors in a complex disease may depend on classification of families by mutational type at known susceptibility genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Classical familial adenomatous polyposis (FAP) is a high-penetrance autosomal dominant disease that predisposes to hundreds or thousands of colorectal adenomas and carcinoma and that results from truncating mutations in the APC gene. A variant of FAP is attenuated adenomatous polyposis coli, which results from germ-line mutations in the 5′ and 3′ regions of the APC gene. Attenuated adenomatous polyposis coli patients have “multiple” colorectal adenomas (typically fewer than 100) without the florid phenotype of classical FAP. Another group of patients with multiple adenomas has no mutations in the APC gene, and their phenotype probably results from variation at a locus, or loci, elsewhere in the genome. Recently, however, a missense variant of APC (I1307K) was described that confers an increased risk of colorectal tumors, including multiple adenomas, in Ashkenazim. We have studied a set of 164 patients with multiple colorectal adenomas and/or carcinoma and analyzed codons 1263–1377 (exon 15G) of the APC gene for germ-line variants. Three patients with the I1307K allele were detected, each of Ashkenazi descent. Four patients had a germ-line E1317Q missense variant of APC that was not present in controls; one of these individuals had an unusually large number of metaplastic polyps of the colorectum. There is increasing evidence that there exist germ-line variants of the APC gene that predispose to the development of multiple colorectal adenomas and carcinoma, but without the florid phenotype of classical FAP, and possibly with importance for colorectal cancer risk in the general population.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Germline defects in the tuberous sclerosis 2 (TSC2) tumor suppressor gene predispose humans and rats to benign and malignant lesions in a variety of tissues. The brain is among the most profoundly affected organs in tuberous sclerosis (TSC) patients and is the site of development of the cortical tubers for which the hereditary syndrome is named. A spontaneous germline inactivation of the Tsc2 locus has been described in an animal model, the Eker rat. We report that the homozygous state of this mutation (Tsc2Ek/Ek) was lethal in mid-gestation (the equivalent of mouse E9.5–E13.5), when Tsc2 mRNA was highly expressed in embryonic neuroepithelium. During this period homozygous mutant Eker embryos lacking functional Tsc2 gene product, tuberin, displayed dysraphia and papillary overgrowth of the neuroepithelium, indicating that loss of tuberin disrupted the normal development of this tissue. Interestingly, there was significant intraspecies variability in the penetrance of cranial abnormalities in mutant embryos: the Long–Evans strain Tsc2Ek/Ek embryos displayed these defects whereas the Fisher 344 homozygous mutant embryos had normal-appearing neuroepithelium. Taken together, our data indicate that the Tsc2 gene participates in normal brain development and suggest the inactivation of this gene may have similar functional consequences in both mature and embryonic brain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The F-box protein Skp2 (S-phase kinase-associated protein 2) positively regulates the G1-S transition by controlling the stability of several G1 regulators, such as the cell cycle inhibitor p27. We show here that Skp2 expression correlates directly with grade of malignancy and inversely with p27 levels in human lymphomas. To directly evaluate the potential of Skp2 to deregulate growth in vivo, we generated transgenic mice expressing Skp2 targeted to the T-lymphoid lineage as well as double transgenic mice coexpressing Skp2 and activated N-Ras. A strong cooperative effect between these two transgenes induced T cell lymphomas with shorter latency and higher penetrance, leading to significantly decreased survival when compared with control and single transgenic animals. Furthermore, lymphomas of Nras single transgenic animals often expressed higher levels of endogenous Skp2 than tumors of double transgenic mice. This study provides evidence of a role for an F-box protein in oncogenesis and establishes SKP2 as a protooncogene causally involved in the pathogenesis of lymphomas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BRCA1 and BRCA2 carriers are at increased risk for both breast and ovarian cancer, but estimates of lifetime risk vary widely, suggesting their penetrance is modified by other genetic and/or environmental factors. The BRCA1 and BRCA2 proteins function in DNA repair in conjunction with RAD51. A preliminary report suggested that a single nucleotide polymorphism in the 5′ untranslated region of RAD51 (135C/G) increases breast cancer risk in BRCA1 and BRCA2 carriers. To investigate this effect we studied 257 female Ashkenazi Jewish carriers of one of the common BRCA1 (185delAG, 5382insC) or BRCA2 (6174delT) mutations. Of this group, 164 were affected with breast and/or ovarian cancer and 93 were unaffected. RAD51 genotyping was performed on all subjects. Among BRCA1 carriers, RAD51-135C frequency was similar in healthy and affected women [6.1% (3 of 49) and 9.9% (12 of 121), respectively], and RAD-135C did not influence age of cancer diagnosis [Hazard ratio (HR) = 1.18 for disease in RAD51-135C heterozygotes, not significant]. However, in BRCA2 carriers, RAD51-135C heterozygote frequency in affected women was 17.4% (8 of 46) compared with 4.9% (2 of 41) in unaffected women (P = 0.07). Survival analysis in BRCA2 carriers showed RAD51-135C increased risk of breast and/or ovarian cancer with an HR of 4.0 [95% confidence interval 1.6–9.8, P = 0.003]. This effect was largely due to increased breast cancer risk with an HR of 3.46 (95% confidence interval 1.3–9.2, P = 0.01) for breast cancer in BRCA2 carriers who were RAD51-135C heterozygotes. RAD51 status did not affect ovarian cancer risk. These results show RAD51-135C is a clinically significant modifier of BRCA2 penetrance, specifically in raising breast cancer risk at younger ages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At least three distinct beta-adrenergic receptor (beta-AR) subtypes exist in mammals. These receptors modulate a wide variety of processes, from development and behavior, to cardiac function, metabolism, and smooth muscle tone. To understand the roles that individual beta-AR subtypes play in these processes, we have used the technique of gene targeting to create homozygous beta 1-AR null mutants (beta 1-AR -/-) in mice. The majority of beta 1-AR -/- mice die prenatally, and the penetrance of lethality shows strain dependence. Beta l-AR -/- mice that do survive to adulthood appear normal, but lack the chronotropic and inotropic responses seen in wild-type mice when beta-AR agonists such as isoproterenol are administered. Moreover, this lack of responsiveness is accompanied by markedly reduced stimulation of adenylate cyclase in cardiac membranes from beta 1-AR -/- mice. These findings occur despite persistent cardiac beta 2-AR expression, demonstrating the importance of beta 1-ARs for proper mouse development and cardiac function, while highlighting functional differences between beta-AR subtypes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The inhibition of alpha i2-/- mouse cardiac isoproterenol-stimulated adenylyl cyclase (AC; EC 4.6.1.1) activity by carbachol and that of alpha i2-/- adipocyte AC by phenylisopropyladenosine (PIA), prostaglandin E2, and nicotinic acid were partially, but not completely, inhibited. While the inhibition of cardiac AC was affected in all alpha i2-/- animals tested, only 50% of the alpha i2-/- animals showed an impaired inhibition of adipocyte AC, indicative of a partial penetrance of this phenotype. In agreement with previous results, the data show that Gi2 mediates hormonal inhibition of AC and that Gi3 and/or Gi1 is capable of doing the same but with a lower efficacy. Disruption of the alpha i2 gene affected about equally the actions of all the receptors studied, indicating that none of them exhibits a striking specificity for one type of Gi over another and that receptors are likely to he selective rather than specific in their interaction with functionally homologous G proteins (e.g., Gi1, Gi2, Gi3). Western analysis of G protein subunit levels in simian virus 40-transformed primary embryonic fibroblasts from alpha i2+/+ and alpha i2-/- animals showed that alpha i2 accounts for about 50% of the immunopositive G protein alpha subunits and that loss of the alpha i2 is accompanied by a parallel reduction in G beta 35 and G beta 36 subunits and by a 30-50% increase in alpha i3. This suggests that G beta-gamma levels may be regulated passively through differential rates of turnover in their free vs. trimeric states. The existence of compensatory increase(s) in alpha i subunit expression raises the possibility that the lack of effect of a missing alpha i2 on AC inhibition in adipocytes of some alpha i2-/- animals may be the reflection of a more pronounced compensatory expression of alpha i3 and/or alpha i1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

F52 is a myristoylated, alanine-rich substrate for protein kinase C. We have generated F52-deficient mice by the gene targeting technique. These mutant mice manifest severe neural tube defects that are not associated with other complex malformations, a phenotype reminiscent of common human neural tube defects. The neural tube defects observed include both exencephaly and spina bifida, and the phenotype exhibits partial penetrance with about 60% of homozygous embryos developing neural tube defects. Exencephaly is the prominent type of defect and leads to high prenatal lethality. Neural tube defects are observed in a smaller percentage of heterozygous embryos (about 10%). Abnormal brain development and tail formation occur in homozygous mutants and are likely to be secondary to the neural tube defects. Disruption of F52 in mice therefore identifies a gene whose mutation results in isolated neural tube defects and may provide an animal model for common human neural tube defects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cytokines are now recognized to play important roles in the physiology of the central nervous system (CNS) during health and disease. Tumor necrosis factor alpha (TNF-alpha) has been implicated in the pathogenesis of several human CNS disorders including multiple sclerosis, AIDS dementia, and cerebral malaria. We have generated transgenic mice that constitutively express a murine TNF-alpha transgene, under the control of its own promoter, specifically in their CNS and that spontaneously develop a chronic inflammatory demyelinating disease with 100% penetrance from around 3-8 weeks of age. High-level expression of the transgene was seen in neurons distributed throughout the brain. Disease is manifested by ataxia, seizures, and paresis and leads to early death. Histopathological analysis revealed infiltration of the meninges and CNS parenchyma by CD4+ and CD8+ T lymphocytes, widespread reactive astrocytosis and microgliosis, and focal demyelination. The direct action of TNF-alpha in the pathogenesis of this disease was confirmed by peripheral administration of a neutralizing anti-murine TNF-alpha antibody. This treatment completely prevented the development of neurological symptoms, T-cell infiltration into the CNS parenchyma, astrocytosis, and demyelination, and greatly reduced the severity of reactive microgliosis. These results demonstrate that overexpression of TNF-alpha in the CNS can cause abnormalities in nervous system structure and function. The disease induced in TNF-alpha transgenic mice shows clinical and histopathological features characteristic of inflammatory demyelinating CNS disorders in humans, and these mice represent a relevant in vivo model for their further study.