879 resultados para Paternal bias
Resumo:
728 human genes were divided to four groups according to the GC contents of their coding sequences (from GC<0.43 to GC>0.58). Examination of synonymous-codon bias in the 4 groups show that NTG (N represents any base of T, A, C, G) is most favored and NCG
Resumo:
Perceptual learning improves perception through training. Perceptual learning improves with most stimulus types but fails when . certain stimulus types are mixed during training (roving). This result is surprising because classical supervised and unsupervised neural network models can cope easily with roving conditions. What makes humans so inferior compared to these models? As experimental and conceptual work has shown, human perceptual learning is neither supervised nor unsupervised but reward-based learning. Reward-based learning suffers from the so-called unsupervised bias, i.e., to prevent synaptic " drift" , the . average reward has to be exactly estimated. However, this is impossible when two or more stimulus types with different rewards are presented during training (and the reward is estimated by a running average). For this reason, we propose no learning occurs in roving conditions. However, roving hinders perceptual learning only for combinations of similar stimulus types but not for dissimilar ones. In this latter case, we propose that a critic can estimate the reward for each stimulus type separately. One implication of our analysis is that the critic cannot be located in the visual system. © 2011 Elsevier Ltd.
Resumo:
Recent developments in modeling driver steering control with preview are reviewed. While some validation with experimental data has been presented, the rigorous application of formal system identification methods has not yet been attempted. This paper describes a steering controller based on linear model-predictive control. An indirect identification method that minimizes steering angle prediction error is developed. Special attention is given to filtering the prediction error so as to avoid identification bias that arises from the closed-loop operation of the driver-vehicle system. The identification procedure is applied to data collected from 14 test drivers performing double lane change maneuvers in an instrumented vehicle. It is found that the identification procedure successfully finds parameter values for the model that give small prediction errors. The procedure is also able to distinguish between the different steering strategies adopted by the test drivers. © 2006 IEEE.
Resumo:
Stress/recovery measurements demonstrate that even high-performance passivated In-Zn-O/ Ga-In-Zn-O thin film transistors with excellent in-dark stability suffer from light-bias induced threshold voltage shift (ΔV T) and defect density changes. Visible light stress leads to ionisation of oxygen vacancy sites, causing persistent photoconductivity. This makes the material act as though it was n-doped, always causing a negative threshold voltage shift under strong illumination, regardless of the magnitude and polarity of the gate bias.
Resumo:
Stress/recovery measurements demonstrate that even highperformance passivated In-Zn-O/ Ga-In-Zn-O thin film transistors with excellent in-dark stability suffer from light-bias induced threshold voltage shift (ΔV T) and defect density changes. Visible light stress leads to ionisation of oxygen vacancy sites, causing persistent photoconductivity. This makes the material act as though it was n-doped, always causing a negative threshold voltage shift under strong illumination, regardless of the magnitude and polarity of the gate bias. © 2011 SID.
Resumo:
Humans are creatures of routine and habit. When faced with situations in which a default option is available, people show a consistent tendency to stick with the default. Why this occurs is unclear. To elucidate its neural basis, we used a novel gambling task in conjunction with functional magnetic resonance imaging. Behavioral results revealed that participants were more likely to choose the default card and felt enhanced emotional responses to outcomes after making the decision to switch. We show that increased tendency to switch away from the default during the decision phase was associated with decreased activity in the anterior insula; activation in this same area in reaction to "switching away from the default and losing" was positively related with experienced frustration. In contrast, decisions to choose the default engaged the ventral striatum, the same reward area as seen in winning. Our findings highlight aversive processes in the insula as underlying the default bias and suggest that choosing the default may be rewarding in itself.
Resumo:
Many visual datasets are traditionally used to analyze the performance of different learning techniques. The evaluation is usually done within each dataset, therefore it is questionable if such results are a reliable indicator of true generalization ability. We propose here an algorithm to exploit the existing data resources when learning on a new multiclass problem. Our main idea is to identify an image representation that decomposes orthogonally into two subspaces: a part specific to each dataset, and a part generic to, and therefore shared between, all the considered source sets. This allows us to use the generic representation as un-biased reference knowledge for a novel classification task. By casting the method in the multi-view setting, we also make it possible to use different features for different databases. We call the algorithm MUST, Multitask Unaligned Shared knowledge Transfer. Through extensive experiments on five public datasets, we show that MUST consistently improves the cross-datasets generalization performance. © 2013 Springer-Verlag.
Resumo:
Genetic variation at the serotonin transporter-linked polymorphic region (5-HTTLPR) is associated with altered amygdala reactivity and lack of prefrontal regulatory control. Similar regions mediate decision-making biases driven by contextual cues and ambiguity, for example the "framing effect." We hypothesized that individuals hemozygous for the short (s) allele at the 5-HTTLPR would be more susceptible to framing. Participants, selected as homozygous for either the long (la) or s allele, performed a decision-making task where they made choices between receiving an amount of money for certain and taking a gamble. A strong bias was evident toward choosing the certain option when the option was phrased in terms of gains and toward gambling when the decision was phrased in terms of losses (the frame effect). Critically, this bias was significantly greater in the ss group compared with the lala group. In simultaneously acquired functional magnetic resonance imaging data, the ss group showed greater amygdala during choices made in accord, compared with those made counter to the frame, an effect not seen in the lala group. These differences were also mirrored by differences in anterior cingulate-amygdala coupling between the genotype groups during decision making. Specifically, lala participants showed increased coupling during choices made counter to, relative to those made in accord with, the frame, with no such effect evident in ss participants. These data suggest that genetically mediated differences in prefrontal-amygdala interactions underpin interindividual differences in economic decision making.
Resumo:
Split-ring resonators represent the ideal route to achieve optical control of the incident light at THz frequencies. These subwavelength metamaterial elements exhibit broad resonances that can be easily tuned lithographically. We have realized a design based on the interplay between the resonances of metallic split rings and the electronic properties of monolayer graphene integrated in a single device. By varying the major carrier concentration of graphene, an active modulation of the optical intensity was achieved in the frequency range between 2.2 and 3.1 THz, achieving a maximum modulation depth of 18%, with a bias as low as 0.5 V.
Resumo:
It has been previously observed that thin film transistors (TFTs) utilizing an amorphous indium gallium zinc oxide (a-IGZO) semiconducting channel suffer from a threshold voltage shift when subjected to a negative gate bias and light illumination simultaneously. In this work, a thermalization energy analysis has been applied to previously published data on negative bias under illumination stress (NBIS) in a-IGZO TFTs. A barrier to defect conversion of 0.65-0.75 eV is extracted, which is consistent with reported energies of oxygen vacancy migration. The attempt-to-escape frequency is extracted to be 10 6-107 s-1, which suggests a weak localization of carriers in band tail states over a 20-40 nm distance. Models for the NBIS mechanism based on charge trapping are reviewed and a defect pool model is proposed in which two distinct distributions of defect states exist in the a-IGZO band gap: these are associated with states that are formed as neutrally charged and 2+ charged oxygen vacancies at the time of film formation. In this model, threshold voltage shift is not due to a defect creation process, but to a change in the energy distribution of states in the band gap upon defect migration as this allows a state formed as a neutrally charged vacancy to be converted into one formed as a 2+ charged vacancy and vice versa. Carrier localization close to the defect migration site is necessary for the conversion process to take place, and such defect migration sites are associated with conduction and valence band tail states. Under negative gate bias stressing, the conduction band tail is depleted of carriers, but the bias is insufficient to accumulate holes in the valence band tail states, and so no threshold voltage shift results. It is only under illumination that the quasi Fermi level for holes is sufficiently lowered to allow occupation of valence band tail states. The resulting charge localization then allows a negative threshold voltage shift, but only under conditions of simultaneous negative gate bias and illumination, as observed experimentally as the NBIS effect. © 2014 AIP Publishing LLC.
Resumo:
In gynogenesis, sperm from related species activates egg and embryonic development, but normally does not contribute genetically to the offspring. In gibel carp, Carassius auratus gibelio Bloch, however, gynogenetic offspring often show some phenotypes apparently derived from the heterologous sperm donor. This paternal effect of allogynogenesis is outstanding in an artificial clone F produced by cold treatment of clone E eggs after insemination with blunt-nose black bream (Megaloabrama amblycephala Yin) sperm. Karyotype analysis revealed 5-15 supernumerary microchromosomes in different individuals of clone F in addition to 156 normal chromosomes inherited from the maternal clone E. A painting probe was prepared from the microdissected microchromosomes, and used to investigate the origin of these microchromosomes. Strong positive signals were detected on each microchromosomes of clone F and on 4 pairs of chromosomes in blunt-nose black bream, whereas no signals were detected on the chromosomes of clone E. This result indicates that some paternal chromosome fragments of blunt-nose black bream have been incorporated into the artificial clone F. Therefore, the manipulation of allogynogenesis may provide a unique method to transfer DNA between diverse species for fish breeding.
Resumo:
Gibel carp (Carassius auratus gibelio Bloch) is a natural gynogenetic fish which requires sperm of the same or related species to activate egg development. The eggs of one gibel carp were divided into two batches. One batch was 'fertilized' with sperm from gibel carp (strain DD), and the other 'fertilized' with sperm from red common carp (Cyprinus carpio red variety) (strain DR). The juveniles were transferred to the laboratory 36 days post-hatch. Triplicate groups of each strain were fed a formulated diet at either 3% or satiation ration for 8 weeks. At both the restricted and satiation rations, specific growth rate was significantly higher in strain DR than in strain DD. At the 3% ration, there was no significant difference in feeding rate or feed conversion efficiency between the two strains. At the satiation ration, strain DR had a significantly lower feeding rate but higher feed conversion efficiency than strain DD. At the satiation ration, strain DR had a significantly lower intake protein, but higher recovered protein than strain DD. There was no significant difference in faecal protein loss between the two strains. At the 3% ration, strain had no significant effects on intake protein, faecal protein or recovered protein. Neither faecal energy loss nor recovered energy was affected by strain or ration. At both the 3% and satiation ration, final body contents of dry matter and lipid were significantly lower in strain DR than strain DD, while there was no significant difference in protein and energy content between the two strains at either ration level. The results suggested that gibel carp 'fertilized' with sperm of common carp grew faster than those 'fertilized' with sperm of gibel carp through increased feed conversion efficiency and protein retention.
Resumo:
The unexpected decrease in measured responsivity observed in a specific GaN Schottky barrier photodetector (PD) at high reverse bias voltage was investigated and explained. Device equivalent transforms and small signal analysis were performed to analyse the test circuit. On this basis, a model was built which explained the responsivity decrease quantitatively. After being revised by this model, responsivity curves varying with bias voltage turned out to be reasonable. It is proved that the decrease is related to the dynamic parallel resistance of the photodiode. The results indicate that with a GaN Schottky PD, the choice of load resistance is restricted according to the dynamic parallel resistance of the device to avoid responsivity decay at high bias voltage.