704 resultados para Pastures


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vast montado areas are threatened by degradation, as the result of a long history of land use changes. Since improved pastures have been installed aiming soil quality improvement and system sustainability, it is crucial to evaluate the effects of these management changes on soil organic matter status and soil biological activity, as soil quality indicators. Therefore, a 35-yr old improved pasture and a natural pasture were studied, considering areas beneath tree canopy and in the open. Total organic C, total N, hot water soluble (HWS) and particulate (POM) C, microbial biomass C (MBC) and N (MBN), C mineralization rate (CMR) and net N mineralization rate (NMR) were determined. In addition, for a 1-yr period, soil β-glucosidase, urease, proteases and acid phosphomonoesterase were periodically determined. Improved pasture promoted the increase of soil C and N through POM-C increment, particularly beneath the trees canopies. The two study pastures did not show differences regarding soil microbial biomass, but variations in CMR, HWS-C and N availability (proteases and urease activities) suggest divergent soil microbial communities. Tree regulator role on C, N and P transformation processes in soil was confirmed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reforestation of agricultural lands has the potential to sequester C, while providing other environmental benefits. It is well established that reforestation can have a profound impact on soil physicochemical properties but the associated changes to soil microbial communities are poorly understood. Therefore, the objective of this study was to quantify changes in soil physicochemical properties and microbial communities in soils collected from reforested pastures and compare then to remnant vegetation and un-reforested pastures. To address this aim, we collected soil from two locations (pasture and its adjacent reforested zone, or pasture and its adjacent remnant vegetation) on each of ten separate farms that covered the range of planting ages (0-30 years and remnant vegetation) in a temperate region of southeastern Australia. Soils were analysed for a range of physicochemical properties (including C and nutrients), and microbial biomass and community composition (PLFA profiles). Soil C:N ratios increased with age of tree planting, and soil C concentration was highest in the remnant woodlands. Reforestation had no clear impact on soil microbial biomass or fungal:bacterial ratios (based on PLFA's). Reforestation was associated with significant changes in the molecular composition of the soil microbial community at many farms but similar changes were found within a pasture. These results indicate that reforestation of pastures can result in changes in soil properties within a few decades, but that soil microbial community composition can vary as much spatially within pastures as it does after reforestation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate assessment of standing pasture biomass in livestock production systems is a major factor for improving feed planning. Several tools are available to achieve this, including the GrassMaster II capacitance meter. This tool relies on an electrical signal, which is modified by the surrounding pasture. There is limited knowledge on how this capacitance meter performs in Mediterranean pastures. Therefore, we evaluated the GrassMaster II under Mediterranean conditions to determine (i) the effect of pasture moisture content (PMC) on the meter’s ability to estimate pasture green matter (GM) and dry matter (DM) yields, and (ii) the spatial variability and temporal stability of corrected meter readings (CMR) and DM in a bio-diverse pasture. Field tests were carried out with typical pastures of the southern region of Portugal (grasses, legumes, mixture and volunteer annual species) and at different phenological stages (and different PMC). There were significant positive linear relations between CMR and GM (r2 = 0.60, P < 0.01) and CMR and DM (r2 = 0.35, P < 0.05) for all locations (n = 347). Weak relationships were found for PMC (%) v. slope and coefficient of determination for both GM and DM. A significant linear relation existed for CMR v. GM and DM for PMC >80% (r2= 0.57, P < 0.01, RMSE = 2856.7 kg ha–1, CVRMSE=17.1% to GM; and r2= 0.51, P < 0.01,RMSE = 353.7 kg ha–1, CVRMSE = 14.3% to DM). Therefore, under the conditions of this current study there exists an optimum PMC (%) for estimating both GM and DM with the GrassMaster II. Repeated-measurements taken at the same location on different dates and conditions in a bio-diverse pasture showed similar and stable patterns between CMR and DM (r2= 0.67, P < 0.01, RMSE = 136.1 kg ha–1, CVRMSE = 6.5%). The results indicate that the GrassMaster II in-situ technique could play a crucial role in assessing pasture mass to improve feed planning under Mediterranean conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil acidity and low natural fertility are the main limiting factors for grain production in tropical regionssuch as the Brazilian Cerrado. The application of lime to the surface of no-till soil can improve plant nutrition, dry matter production, crop yields and revenue. The present study, conducted at the Lageado Experimental Farm in Botucatu, State of São Paulo, Brazil, is part of an ongoing research project initi-ated in 2002 to evaluate the long-term effects of the surface application of lime on the soil?s chemical attributes, nutrition and kernel/grain yield of peanut (Arachis hypogaea), white oat (Avena sativa L.) and maize (Zea mays L.) inter cropped with palisade grass (Urochloa brizantha cv. Marandu), as well as the forage dry matter yield of palisade grass in winter/spring, its crude protein concentration, estimated meat production, and revenue in a tropical region with a dry winter during four growing seasons. The experiment was designed in randomized blocks with four replications. The treatments consisted of four rates of lime application (0, 1000, 2000 and 4000 kg ha−1), performed in November 2004. The surface application of limestone to the studied tropical no-till soil was efficient in reducing soil acidity from the surface down to a depth of 0.60 m and resulted in greater availability of P and K at the soil surface. Ca and Mg availability in the soil also increased with the lime application rate, up to a depth of 0.60 m. Nutrient absorption was enhanced with liming, especially regarding the nutrient uptake of K, Ca and Mg by plants.Significant increases in the yield components and kernel/grain yields of peanut, white oat and maize were obtained through the surface application of limestone. The lime rates estimated to achieve the maximum grain yield, especially in white oat and maize, were very close to the rates necessary to increase the base saturation of a soil sample collected at a depth of 0?0.20 m to 70%, indicating that the surface liming of 2000 kg ha−1is effective for the studied tropical no-till soil. This lime rate also increases the forage dry matter yield, crude protein concentration and estimated meat production during winter/spring in the maize-palisade grass inter cropping, provides the highest total and mean net profit during the four growing seasons, and can improve the long-term sustainability of tropical agriculture in the Brazilian Cerrado.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Land use change from native forests to pastures in the tropics have impact on global carbon (C) cycle through increased rates of C emissions to the atmosphere and the loss of above- and belowground C accumulation and storage capacity (SILVER et al., 2000). This study was conducted to determine the carbon stock in a Ultisol under a pure Brachiaria humidicola (Rendle) Scheick pasture and a mixed pasture of B. humidicola and Arachis pintoi Krapov. & W. C. Greg cv. BRS Mandobi, both without fertilization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mineral nitrogen (N) dynamics in soil and the exchange of N gaseous in the interface soil-atmosphere are intimately associated with animal manure in pastures. According to soil inorganic-N pools and the site studied, forest or pasture, and pastures age the soil inorganic-N pools of ammonium and nitrate can be similar in the forest or ammonium dominated in the pasture. Also annual average net nitrification rates at soil surface in forest can be higher than in pasture suggesting a higher potential for nitrate-N losses either through leaching or gaseous emissions from intact forests compared with established pastures (NEILL et al., 1995).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study was conducted to test the hypothesis that forage peanut (Arachis pintoi cv BRS Mandobi) can be successfully introduced into a Brachiaria humidicula pasture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of conversion from forest-to-pasture upon soil carbon stocks has been intensively discussed, but few studies focus on how this land-use change affects carbon (C) distribution across soil fractions in the Amazon basin. We investigated this in the 20 cm depth along a chronosequence of sites from native forest to three successively older pastures. We performed a physicochemical fractionation of bulk soil samples to better understand the mechanisms by which soil C is stabilized and evaluate the contribution of each C fraction to total soil C. Additionally, we used a two-pool model to estimate the mean residence time (MRT) for the slow and active pool C in each fraction. Soil C increased with conversion from forest-to-pasture in the particulate organic matter (> 250 mu m), microaggregate (53-250 mu m), and d-clay (< 2 mu m) fractions. The microaggregate comprised the highest soil C content after the conversion from forest-to-pasture. The C content of the d-silt fraction decreased with time since conversion to pasture. Forest-derived C remained in all fractions with the highest concentration in the finest fractions, with the largest proportion of forest-derived soil C associated with clay minerals. Results from this work indicate that microaggregate formation is sensitive to changes in management and might serve as an indicator for management-induced soil carbon changes, and the soil C changes in the fractions are dependent on soil texture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Changes in grassland management intended to increase productivity can lead to sequestration of substantial amounts of atmospheric C in soils. Management-intensive grazing (MiG) can increase forage production in mesic pastures, but potential impacts on soil C have not been evaluated. We sampled four pastures (to 50 cm depth) in Virginia, USA, under MiG and neighboring pastures that were extensively grazed or bayed to evaluate impacts of grazing management on total soil organic C and N pools, and soil C fractions. Total organic soil C averaged 8.4 Mg C ha(-1) (22%) greater under MiG; differences were significant at three of the four sites examined while total soil N was greater for two sites. Surface (0-10 cm) particulate organic matter (POM) C increased at two sites; POM C for the entire depth increment (0-50 cm) did not differ significantly between grazing treatments at any of the sites. Mineral-associated C was related to silt plus clay content and tended to be greater under MiG. Neither soil C:N ratios, POM C, or POM C:total C ratios were accurate indicators of differences in total soil C between grazing treatments, though differences in total soil C between treatments attributable to changes in POM C (43%) were larger than expected based on POM C as a percentage of total C (24.5%). Soil C sequestration rates, estimated by calculating total organic soil C differences between treatments (assuming they arose from changing grazing management and can be achieved elsewhere) and dividing by duration of treatment, averaged 0.41 Mg C ha(-1) year(-1) across the four sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

More than 13 Mha of nonfederal land in the southeastern U.S. are devoted to pastureland. Between 1982 and 1992, pastureland increased by 100,000 ha, with nearly 70% converted from cultivated land. We examined the potential for carbon (C) sequestration with improved pasture management and conversion into pastureland from cultivated land. Improved pasture management techniques, such as intensive grazing, fertilization, introduction of improved grass and legume species, and better irrigation systems can lead to sequestration of atmospheric C in soil. Literature values for the influence of changes in pasture management on soil C were summarized for several potential management changes in the Southeast. Soil C sequestration estimates for the Southeast were based on current pasture management practices and evaluated for a range of different adoption rates of improved practices. Conversion into pasture can also potentially sequester significant amounts of atmospheric C in soils. Land-use data from the National Resources Inventory and literature estimates of soil C changes following conversion to pasture were used to estimate historical (1982 to 1992) soil C sequestration in pastures. Potential future sequestration was estimated based on extrapolation of land-use trends between 1982 and 1992. With continued conversion into pasture and improvement of pasture management, southeastern U.S. pasture soils may be a significant C sink for several years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We assessed the effect of biochar incorporation into the soil on the soil-atmosphere exchange of the greenhouse gases (GHG) from an intensive subtropical pasture. For this, we measured N2O, CH4 and CO2 emissions with high temporal resolution from April to June 2009 in an existing factorial experiment where cattle feedlot biochar had been applied at 10 t ha-1 in November 2006. Over the whole measurement period, significant emissions of N2O and CO2 were observed, whereas a net uptake of CH4 was measured. N2O emissions were found to be highly episodic with one major emission pulse (up to 502 µg N2O-N m-2 h 1) following heavy rainfall. There was no significant difference in the net flux of GHGs from the biochar amended vs. the control plots. Our results demonstrate that intensively managed subtropical pastures on ferrosols in northern New South Wales of Australia can be a significant source of GHG. Our hypothesis that the application of biochar would lead to a reduction in emissions of GHG from soils was not supported in this field assessment. Additional studies with longer observation periods are needed to clarify the long term effect of biochar amendment on soil microbial processes and the emission of GHGs under field conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main limitations with existing fungal spore traps are that they are stationary and cannot be used in inaccessible or remote areas of Australia. This may result in delayed assessment, possible spread of harmful crop infestations and loss of crop yield and productivity. Fitted with the developed smart spore trap the UAV can fly, detect and monitor spores of plant pathogens in areas which previously were almost impossible to monitor. The technology will allow for earlier detection of emergency plant pests (EPPs) incursions by providing efficient and effective airborne surveillance, helping to protect Australia’s crops, pastures and the environment. The project is led by the Cooperative Research Centre for National Plant Biosecurity, with ARCAA/ QUT, CSIRO and the Queensland Government also providing resources. The prototype airplane was exhibited at the Innovation in Australia event December 7.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Australian climate, soils and agricultural management practices are significantly different from those of the northern hemisphere nations. Consequently, experimental data on greenhouse gas production from European and North American agricultural soils and its interpretation are unlikely to be directly applicable to Australian systems. A programme of studies of non-CO2 greenhouse gas emissions from agriculture has been established that is designed to reduce uncertainty of non-CO2 greenhouse gas emissions in the Australian National Greenhouse Gas Inventory and provide outputs that will enable better on-farm management practices for reducing non-CO2 greenhouse gas emissions, particularly nitrous oxide. The systems being examined and their locations are irrigated pasture (Kyabram Victoria), irrigated cotton (Narrabri, NSW), irrigated maize (Griffith, NSW), rain-fed wheat (Rutherglen, Victoria) and rain-fed wheat (Cunderdin, WA). The field studies include treatments with and without fertilizer addition, stubble burning versus stubble retention, conventional cultivation versus direct drilling and crop rotation to determine emission factors and treatment possibilities for best management options. The data to date suggest that nitrous oxide emissions from nitrogen fertilizer, applied to irrigated dairy pastures and rain-fed winter wheat, appear much lower than the average of northern hemisphere grain and pasture studies. More variable emissions have been found in studies of irrigated cotton/vetch/wheat rotation and substantially higher emissions from irrigated maize.