872 resultados para Particle swarm optimization algorithm
Resumo:
This paper presented the particle swarm optimization approach for nonlinear system identification and for reducing the oscillatory movement of the nonlinear systems to periodic orbits. We analyzes the non-linear dynamics in an oscillator mechanical and demonstrated that this model has a chaotic behavior. Chaos control problems consist of attempts to stabilize a chaotic system to an equilibrium point, a periodic orbit, or more general, about a given reference trajectory. This approaches is applied in analyzes the nonlinear dynamics in an oscillator mechanical. The simulation results show the identification by particle swarm optimization is very effective.
Resumo:
Este artigo apresenta uma breve revisão de alguns dos mais recentes métodos bioinspirados baseados no comportamento de populações para o desenvolvimento de técnicas de solução de problemas. As metaheurísticas tratadas aqui correspondem às estratégias de otimização por colônia de formigas, otimização por enxame de partículas, algoritmo shuffled frog-leaping, coleta de alimentos por bactérias e colônia de abelhas. Os princípios biológicos que motivaram o desenvolvimento de cada uma dessas estratégias, assim como seus respectivos algoritmos computacionais, são introduzidos. Duas aplicações diferentes foram conduzidas para exemplificar o desempenho de tais algoritmos. A finalidade é enfatizar perspectivas de aplicação destas abordagens em diferentes problemas da área de engenharia.
Resumo:
An earlier model underlying the foraging strategy of a pachycodyla apicalis ant is modified. The proposed algorithm incorporates key features of the tabu-search method in the development of a relatively simple but robust global ant colony optimization algorithm. Numerical results are reported to validate and demonstrate the feasibility and effectiveness of the proposed algorithm in solving electromagnetic (EM) design problems.
Resumo:
Alternative sampling procedures are compared to the pure random search method. It is shown that the efficiency of the algorithm can be improved with respect to the expected number of steps to reach an epsilon-neighborhood of the optimal point.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper analyzes the non-linear dynamics of a MEMS Gyroscope system, modeled with a proof mass constrained to move in a plane with two resonant modes, which are nominally orthogonal. The two modes are ideally coupled only by the rotation of the gyro about the plane's normal vector. We demonstrated that this model has an unstable behavior. Control problems consist of attempts to stabilize a system to an equilibrium point, a periodic orbit, or more general, about a given reference trajectory. We also developed a particle swarm optimization technique for reducing the oscillatory movement of the nonlinear system to a periodic orbit. © 2010 Springer-Verlag.
Resumo:
Although non-technical losses automatic identification has been massively studied, the problem of selecting the most representative features in order to boost the identification accuracy has not attracted much attention in this context. In this paper, we focus on this problem applying a novel feature selection algorithm based on Particle Swarm Optimization and Optimum-Path Forest. The results demonstrated that this method can improve the classification accuracy of possible frauds up to 49% in some datasets composed by industrial and commercial profiles. © 2011 IEEE.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Durante o processo de extração do conhecimento em bases de dados, alguns problemas podem ser encontrados como por exemplo, a ausência de determinada instância de um atributo. A ocorrência de tal problemática pode causar efeitos danosos nos resultados finais do processo, pois afeta diretamente a qualidade dos dados a ser submetido a um algoritmo de aprendizado de máquina. Na literatura, diversas propostas são apresentadas a fim de contornar tal dano, dentre eles está a de imputação de dados, a qual estima um valor plausível para substituir o ausente. Seguindo essa área de solução para o problema de valores ausentes, diversos trabalhos foram analisados e algumas observações foram realizadas como, a pouca utilização de bases sintéticas que simulem os principais mecanismos de ausência de dados e uma recente tendência a utilização de algoritmos bio-inspirados como tratamento do problema. Com base nesse cenário, esta dissertação apresenta um método de imputação de dados baseado em otimização por enxame de partículas, pouco explorado na área, e o aplica para o tratamento de bases sinteticamente geradas, as quais consideram os principais mecanismos de ausência de dados, MAR, MCAR e NMAR. Os resultados obtidos ao comprar diferentes configurações do método à outros dois conhecidos na área (KNNImpute e SVMImpute) são promissores para sua utilização na área de tratamento de valores ausentes uma vez que alcançou os melhores valores na maioria dos experimentos realizados.
Resumo:
Apesar do aumento significativo do uso de redes locais sem fio (WLAN) nos últimos anos, aspectos de projeto e planejamento de capacidade da rede são ainda sistematicamente negligenciados durante a implementação da rede. Tipicamente um projeto de rede local sem fio é feito e instalado por profissionais de rede. Esses profissionais são extremamente experientes com redes cabeadas, mas são ainda geralmente pouco experientes com redes sem fio. Deste modo, as instalações de redes locais sem fio são desvantajosas pela falta de um modelo de avaliação de desempenho e para determinar a localização do ponto de acesso (PA), além disso, fatores importantes do ambiente não são considerados no projeto. Esses fatores se tornam mais importante quando muitos pontos de acesso (PAs) são instalados para cobrir um único edifício, algumas vezes sem planejamento de freqüência. Falhas como essa podem causar interferência entre células geradas pelo mesmo PA. Por essa razão, a rede não obterá os padrões de qualidade de serviço (QoS) exigidos por cada serviço. O presente trabalho apresenta uma proposta para planejamento de redes sem fio levando em consideração a influência da interferência com o auxílio de inteligência computacional tais como a utilização de redes Bayesianas. Uma extensiva campanha de medição foi feita para avaliar o desempenho de dois pontos de acesso (PAs) sobre um cenário multiusuário, com e sem interferência. Os dados dessa campanha de medição foram usados como entrada das redes Bayesianas e confirmaram a influência da interferência nos parâmetros de QoS. Uma implementação de algoritmo genético foi utilizado permitindo uma abordagem híbrida para planejamento de redes sem fio. Como efeito de comparação para otimizar os parâmetros de QoS, de modo a encontrar a melhor distância do PA ao receptor garantindo as recomendações do International Telecomunication Union (ITU-T), a técnica de otimização por enxame de partículas foi aplicada.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Since the beginning, some pattern recognition techniques have faced the problem of high computational burden for dataset learning. Among the most widely used techniques, we may highlight Support Vector Machines (SVM), which have obtained very promising results for data classification. However, this classifier requires an expensive training phase, which is dominated by a parameter optimization that aims to make SVM less prone to errors over the training set. In this paper, we model the problem of finding such parameters as a metaheuristic-based optimization task, which is performed through Harmony Search (HS) and some of its variants. The experimental results have showen the robustness of HS-based approaches for such task in comparison against with an exhaustive (grid) search, and also a Particle Swarm Optimization-based implementation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Optical flow methods are accurate algorithms for estimating the displacement and velocity fields of objects in a wide variety of applications, being their performance dependent on the configuration of a set of parameters. Since there is a lack of research that aims to automatically tune such parameters, in this work we have proposed an evolutionary-based framework for such task, thus introducing three techniques for such purpose: Particle Swarm Optimization, Harmony Search and Social-Spider Optimization. The proposed framework has been compared against with the well-known Large Displacement Optical Flow approach, obtaining the best results in three out eight image sequences provided by a public dataset. Additionally, the proposed framework can be used with any other optimization technique.