951 resultados para Particle lattice effect


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This technical report discusses the application of the Lattice Boltzmann Method (LBM) and Cellular Automata (CA) simulation in fluid flow and particle deposition. The current work focuses on incompressible flow simulation passing cylinders, in which we incorporate the LBM D2Q9 and CA techniques to simulate the fluid flow and particle loading respectively. For the LBM part, the theories of boundary conditions are studied and verified using the Poiseuille flow test. For the CA part, several models regarding simulation of particles are explained. And a new Digital Differential Analyzer (DDA) algorithm is introduced to simulate particle motion in the Boolean model. The numerical results are compared with a previous probability velocity model by Masselot [Masselot 2000], which shows a satisfactory result.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We review lattice results related to pion, kaon, D- and B-meson physics with the aim of making them easily accessible to the particle-physics community. More specifically, we report on the determination of the lightquark masses, the form factor f+(0), arising in semileptonic K → π transition at zero momentum transfer, as well as the decay-constant ratio fK / fπ of decay constants and its consequences for the CKM matrix elements Vus and Vud. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of SU(2)L × SU(2)R and SU(3)L×SU(3)R Chiral Perturbation Theory and review the determination of the BK parameter of neutral kaon mixing. The inclusion of heavy-quark quantities significantly expands the FLAG scope with respect to the previous review. Therefore, we focus here on D- and B-meson decay constants, form factors, and mixing parameters, since these are most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. In addition we review the status of lattice determinations of the strong coupling constant αs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The flux of organic particles below the mixed layer is one major pathway of carbon from the surface into the deep ocean. The magnitude of this export flux depends on two major processes-remineralization rates and sinking velocities. Here, we present an efficient method to measure sinking velocities of particles in the size range from approximately 3-400 µm by means of video microscopy (FlowCAM®). The method allows rapid measurement and automated analysis of mixed samples and was tested with polystyrene beads, different phytoplankton species, and sediment trap material. Sinking velocities of polystyrene beads were close to theoretical values calculated from Stokes' Law. Sinking velocities of the investigated phytoplankton species were in reasonable agreement with published literature values and sinking velocities of material collected in sediment trap increased with particle size. Temperature had a strong effect on sinking velocities due to its influence on seawater viscosity and density. An increase in 9 °C led to a measured increase in sinking velocities of 40 %. According to this temperature effect, an average temperature increase in 2 °C as projected for the sea surface by the end of this century could increase sinking velocities by about 6 % which might have feedbacks on carbon export into the deep ocean.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The development of electrochemical processes for the conversion of CO2 into value-added products allows innovative carbon capture & utilization (CCU) instead of carbon capture & storage (CCS). In addition, coupling this conversion with renewable energy sources would make it possible to chemically store electricity from these intermittent renewable sources. The electroreduction of CO2 to formate in aqueous solution has been performed using Sn particles deposited over a carbon support. The effect of the particle size and Sn metal loading has been evaluated using cyclic voltammetry and chronoamperometry. The selected electrode has been tested on an experimental filter-press type cell system for continuous and single pass CO2 electroreduction to obtain formate as main product at ambient pressure and temperature. Experimental results show that using electrodes with 0.75 mg Sn cm−2, 150 nm Sn particles, and working at a current density of 90 mA cm−2, it is possible to achieve rates of formate production over 3.2 mmol m−2 s−1 and faradaic efficiencies around 70% for 90 min of continuous operation. These experimental conditions allow formate concentrations of about 1.5 g L−1 to be obtained on a continuous mode and with a single pass of catholyte through the cell.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Froth recovery measurements have been conducted in both the presence (three-phase froth) and absence (two-phase froth) of particles of different contact angles in a specially modified laboratory flotation column. Increasing the particle hydrophobicity increased the flow rate of particles entering the froth, while the recovery of particles across the froth phase itself also increased for particle contact angles to 63 and at all vertical heights of the froth column. However, a further increase in the contact angle to 69 resulted in lower particle recovery across the froth phase. The reduced froth recovery for particles of 69 contact angle was linked to significant bubble coalescence within the froth phase. The reduced froth recovery occurred uniformly across the entire particle size range, and was, presumably, a result of particle detachment from coalescing bubbles. Water flow rates across the froth phase also varied with particle contact angle. The general trend was a decrease in the concentrate flow rate of water with increasing particle contact angle. An inverse relationship between water flow rate and bubble radius was also observed, possibly allowing prediction of water flow rate from bubble size measurements in the froth. Comparison of the froth structure, defined by bubble size, gas hold-up and bubble layer thickness, for two- and three-phase froths, at the same frother concentration, showed there was a relationship between water flow rate and froth structure. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study, 3-D Lattice Solid Model (LSMearth or LSM) was extended by introducing particle-scale rotation. In the new model, for each 3-D particle, we introduce six degrees of freedom: Three for translational motion, and three for orientation. Six kinds of relative motions are permitted between two neighboring particles, and six interactions are transferred, i.e., radial, two shearing forces, twisting and two bending torques. By using quaternion algebra, relative rotation between two particles is decomposed into two sequence-independent rotations such that all interactions due to the relative motions between interactive rigid bodies can be uniquely decided. After incorporating this mechanism and introducing bond breaking under torsion and bending into the LSM, several tests on 2-D and 3-D rock failure under uni-axial compression are carried out. Compared with the simulations without the single particle rotational mechanism, the new simulation results match more closely experimental results of rock fracture and hence, are encouraging. Since more parameters are introduced, an approach for choosing the new parameters is presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The fluid – particle interaction inside a 41.7 mg s-1 fluidised bed reactor is modelled. Three char particles of sizes 500 µm, 250 µm, and 100 µm are injected into the fluidised bed and the momentum transport from the fluidising gas and fluidised sand is modelled. Due to the fluidising conditions and reactor design the char particles will either be entrained from the reactor or remain inside the bubbling bed. The particle size is the factor that differentiates the particle motion inside the reactor and their efficient entrainment out of it. A 3-Dimensional simulation has been performed with a completele revised momentum transport model for bubble three-phase flow according to the literature as an extension to the commercial finite volume code FLUENT 6.2.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recent technological developments have made it possible to design various microdevices where fluid flow and heat transfer are involved. For the proper design of such systems, the governing physics needs to be investigated. Due to the difficulty to study complex geometries in micro scales using experimental techniques, computational tools are developed to analyze and simulate flow and heat transfer in microgeometries. However, conventional numerical methods using the Navier-Stokes equations fail to predict some aspects of microflows such as nonlinear pressure distribution, increase mass flow rate, slip flow and temperature jump at the solid boundaries. This necessitates the development of new computational methods which depend on the kinetic theory that are both accurate and computationally efficient. In this study, lattice Boltzmann method (LBM) was used to investigate the flow and heat transfer in micro sized geometries. The LBM depends on the Boltzmann equation which is valid in the whole rarefaction regime that can be observed in micro flows. Results were obtained for isothermal channel flows at Knudsen numbers higher than 0.01 at different pressure ratios. LBM solutions for micro-Couette and micro-Poiseuille flow were found to be in good agreement with the analytical solutions valid in the slip flow regime (0.01 < Kn < 0.1) and direct simulation Monte Carlo solutions that are valid in the transition regime (0.1 < Kn < 10) for pressure distribution and velocity field. The isothermal LBM was further extended to simulate flows including heat transfer. The method was first validated for continuum channel flows with and without constrictions by comparing the thermal LBM results against accurate solutions obtained from analytical equations and finite element method. Finally, the capability of thermal LBM was improved by adding the effect of rarefaction and the method was used to analyze the behavior of gas flow in microchannels. The major finding of this research is that, the newly developed particle-based method described here can be used as an alternative numerical tool in order to study non-continuum effects observed in micro-electro-mechanical-systems (MEMS).