970 resultados para Parallel programming
Resumo:
This paper describes the design, application, and evaluation of a user friendly, flexible, scalable and inexpensive Advanced Educational Parallel (AdEPar) digital signal processing (DSP) system based on TMS320C25 digital processors to implement DSP algorithms. This system will be used in the DSP laboratory by graduate students to work on advanced topics such as developing parallel DSP algorithms. The graduating senior students who have gained some experience in DSP can also use the system. The DSP laboratory has proved to be a useful tool in the hands of the instructor to teach the mathematically oriented topics of DSP that are often difficult for students to grasp. The DSP laboratory with assigned projects has greatly improved the ability of the students to understand such complex topics as the fast Fourier transform algorithm, linear and circular convolution, the theory and design of infinite impulse response (IIR) and finite impulse response (FIR) filters. The user friendly PC software support of the AdEPar system makes it easy to develop DSP programs for students. This paper gives the architecture of the AdEPar DSP system. The communication between processors and the PC-DSP processor communication are explained. The parallel debugger kernels and the restrictions of the system are described. The programming in the AdEPar is explained, and two benchmarks (parallel FFT and DES) are presented to show the system performance.
Resumo:
Many scientific applications are programmed using hybrid programming models that use both message passing and shared memory, due to the increasing prevalence of large-scale systems with multicore, multisocket nodes. Previous work has shown that energy efficiency can be improved using software-controlled execution schemes that consider both the programming model and the power-aware execution capabilities of the system. However, such approaches have focused on identifying optimal resource utilization for one programming model, either shared memory or message passing, in isolation. The potential solution space, thus the challenge, increases substantially when optimizing hybrid models since the possible resource configurations increase exponentially. Nonetheless, with the accelerating adoption of hybrid programming models, we increasingly need improved energy efficiency in hybrid parallel applications on large-scale systems. In this work, we present new software-controlled execution schemes that consider the effects of dynamic concurrency throttling (DCT) and dynamic voltage and frequency scaling (DVFS) in the context of hybrid programming models. Specifically, we present predictive models and novel algorithms based on statistical analysis that anticipate application power and time requirements under different concurrency and frequency configurations. We apply our models and methods to the NPB MZ benchmarks and selected applications from the ASC Sequoia codes. Overall, we achieve substantial energy savings (8.74 percent on average and up to 13.8 percent) with some performance gain (up to 7.5 percent) or negligible performance loss.
Resumo:
Refactoring is the process of changing the structure of a program without changing its behaviour. Refactoring has so far only really been deployed effectively for sequential programs. However, with the increased availability of multicore (and, soon, manycore) systems, refactoring can play an important role in helping both expert and non-expert parallel programmers structure and implement their parallel programs. This paper describes the design of a new refactoring tool that is aimed at increasing the programmability of parallel systems. To motivate our design, we refactor a number of examples in C, C++ and Erlang into good parallel implementations, using a set of formal pattern rewrite rules. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
This paper describes the ParaPhrase project, a new 3-year targeted research project funded under EU Framework 7 Objective 3.4 (Computer Systems), starting in October 2011. ParaPhrase aims to follow a new approach to introducing parallelism using advanced refactoring techniques coupled with high-level parallel design patterns. The refactoring approach will use these design patterns to restructure programs defined as networks of software components into other forms that are more suited to parallel execution. The programmer will be aided by high-level cost information that will be integrated into the refactoring tools. The implementation of these patterns will then use a well-understood algorithmic skeleton approach to achieve good parallelism. A key ParaPhrase design goal is that parallel components are intended to match heterogeneous architectures, defined in terms of CPU/GPU combinations, for example. In order to achieve this, the ParaPhrase approach will map components at link time to the available hardware, and will then re-map them during program execution, taking account of multiple applications, changes in hardware resource availability, the desire to reduce communication costs etc. In this way, we aim to develop a new approach to programming that will be able to produce software that can adapt to dynamic changes in the system environment. Moreover, by using a strong component basis for parallelism, we can achieve potentially significant gains in terms of reducing sharing at a high level of abstraction, and so in reducing or even eliminating the costs that are usually associated with cache management, locking, and synchronisation. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
Embedded real-time applications increasingly present high computation requirements, which need to be completed within specific deadlines, but that present highly variable patterns, depending on the set of data available in a determined instant. The current trend to provide parallel processing in the embedded domain allows providing higher processing power; however, it does not address the variability in the processing pattern. Dimensioning each device for its worst-case scenario implies lower average utilization, and increased available, but unusable, processing in the overall system. A solution for this problem is to extend the parallel execution of the applications, allowing networked nodes to distribute the workload, on peak situations, to neighbour nodes. In this context, this report proposes a framework to develop parallel and distributed real-time embedded applications, transparently using OpenMP and Message Passing Interface (MPI), within a programming model based on OpenMP. The technical report also devises an integrated timing model, which enables the structured reasoning on the timing behaviour of these hybrid architectures.
Resumo:
Genetic Programming (GP) is a widely used methodology for solving various computational problems. GP's problem solving ability is usually hindered by its long execution times. In this thesis, GP is applied toward real-time computer vision. In particular, object classification and tracking using a parallel GP system is discussed. First, a study of suitable GP languages for object classification is presented. Two main GP approaches for visual pattern classification, namely the block-classifiers and the pixel-classifiers, were studied. Results showed that the pixel-classifiers generally performed better. Using these results, a suitable language was selected for the real-time implementation. Synthetic video data was used in the experiments. The goal of the experiments was to evolve a unique classifier for each texture pattern that existed in the video. The experiments revealed that the system was capable of correctly tracking the textures in the video. The performance of the system was on-par with real-time requirements.
Resumo:
Distributed systems are one of the most vital components of the economy. The most prominent example is probably the internet, a constituent element of our knowledge society. During the recent years, the number of novel network types has steadily increased. Amongst others, sensor networks, distributed systems composed of tiny computational devices with scarce resources, have emerged. The further development and heterogeneous connection of such systems imposes new requirements on the software development process. Mobile and wireless networks, for instance, have to organize themselves autonomously and must be able to react to changes in the environment and to failing nodes alike. Researching new approaches for the design of distributed algorithms may lead to methods with which these requirements can be met efficiently. In this thesis, one such method is developed, tested, and discussed in respect of its practical utility. Our new design approach for distributed algorithms is based on Genetic Programming, a member of the family of evolutionary algorithms. Evolutionary algorithms are metaheuristic optimization methods which copy principles from natural evolution. They use a population of solution candidates which they try to refine step by step in order to attain optimal values for predefined objective functions. The synthesis of an algorithm with our approach starts with an analysis step in which the wanted global behavior of the distributed system is specified. From this specification, objective functions are derived which steer a Genetic Programming process where the solution candidates are distributed programs. The objective functions rate how close these programs approximate the goal behavior in multiple randomized network simulations. The evolutionary process step by step selects the most promising solution candidates and modifies and combines them with mutation and crossover operators. This way, a description of the global behavior of a distributed system is translated automatically to programs which, if executed locally on the nodes of the system, exhibit this behavior. In our work, we test six different ways for representing distributed programs, comprising adaptations and extensions of well-known Genetic Programming methods (SGP, eSGP, and LGP), one bio-inspired approach (Fraglets), and two new program representations called Rule-based Genetic Programming (RBGP, eRBGP) designed by us. We breed programs in these representations for three well-known example problems in distributed systems: election algorithms, the distributed mutual exclusion at a critical section, and the distributed computation of the greatest common divisor of a set of numbers. Synthesizing distributed programs the evolutionary way does not necessarily lead to the envisaged results. In a detailed analysis, we discuss the problematic features which make this form of Genetic Programming particularly hard. The two Rule-based Genetic Programming approaches have been developed especially in order to mitigate these difficulties. In our experiments, at least one of them (eRBGP) turned out to be a very efficient approach and in most cases, was superior to the other representations.
Optimal Methodology for Synchronized Scheduling of Parallel Station Assembly with Air Transportation
Resumo:
We present an optimal methodology for synchronized scheduling of production assembly with air transportation to achieve accurate delivery with minimized cost in consumer electronics supply chain (CESC). This problem was motivated by a major PC manufacturer in consumer electronics industry, where it is required to schedule the delivery requirements to meet the customer needs in different parts of South East Asia. The overall problem is decomposed into two sub-problems which consist of an air transportation allocation problem and an assembly scheduling problem. The air transportation allocation problem is formulated as a Linear Programming Problem with earliness tardiness penalties for job orders. For the assembly scheduling problem, it is basically required to sequence the job orders on the assembly stations to minimize their waiting times before they are shipped by flights to their destinations. Hence the second sub-problem is modelled as a scheduling problem with earliness penalties. The earliness penalties are assumed to be independent of the job orders.
Resumo:
This paper presents a new parallel methodology for calculating the determinant of matrices of the order n, with computational complexity O(n), using the Gauss-Jordan Elimination Method and Chio's Rule as references. We intend to present our step-by-step methodology using clear mathematical language, where we will demonstrate how to calculate the determinant of a matrix of the order n in an analytical format. We will also present a computational model with one sequential algorithm and one parallel algorithm using a pseudo-code.
Resumo:
Mainstream hardware is becoming parallel, heterogeneous, and distributed on every desk, every home and in every pocket. As a consequence, in the last years software is having an epochal turn toward concurrency, distribution, interaction which is pushed by the evolution of hardware architectures and the growing of network availability. This calls for introducing further abstraction layers on top of those provided by classical mainstream programming paradigms, to tackle more effectively the new complexities that developers have to face in everyday programming. A convergence it is recognizable in the mainstream toward the adoption of the actor paradigm as a mean to unite object-oriented programming and concurrency. Nevertheless, we argue that the actor paradigm can only be considered a good starting point to provide a more comprehensive response to such a fundamental and radical change in software development. Accordingly, the main objective of this thesis is to propose Agent-Oriented Programming (AOP) as a high-level general purpose programming paradigm, natural evolution of actors and objects, introducing a further level of human-inspired concepts for programming software systems, meant to simplify the design and programming of concurrent, distributed, reactive/interactive programs. To this end, in the dissertation first we construct the required background by studying the state-of-the-art of both actor-oriented and agent-oriented programming, and then we focus on the engineering of integrated programming technologies for developing agent-based systems in their classical application domains: artificial intelligence and distributed artificial intelligence. Then, we shift the perspective moving from the development of intelligent software systems, toward general purpose software development. Using the expertise maturated during the phase of background construction, we introduce a general-purpose programming language named simpAL, which founds its roots on general principles and practices of software development, and at the same time provides an agent-oriented level of abstraction for the engineering of general purpose software systems.
Resumo:
An important problem in computational biology is finding the longest common subsequence (LCS) of two nucleotide sequences. This paper examines the correctness and performance of a recently proposed parallel LCS algorithm that uses successor tables and pruning rules to construct a list of sets from which an LCS can be easily reconstructed. Counterexamples are given for two pruning rules that were given with the original algorithm. Because of these errors, performance measurements originally reported cannot be validated. The work presented here shows that speedup can be reliably achieved by an implementation in Unified Parallel C that runs on an Infiniband cluster. This performance is partly facilitated by exploiting the software cache of the MuPC runtime system. In addition, this implementation achieved speedup without bulk memory copy operations and the associated programming complexity of message passing.
DESIGN AND IMPLEMENT DYNAMIC PROGRAMMING BASED DISCRETE POWER LEVEL SMART HOME SCHEDULING USING FPGA
Resumo:
With the development and capabilities of the Smart Home system, people today are entering an era in which household appliances are no longer just controlled by people, but also operated by a Smart System. This results in a more efficient, convenient, comfortable, and environmentally friendly living environment. A critical part of the Smart Home system is Home Automation, which means that there is a Micro-Controller Unit (MCU) to control all the household appliances and schedule their operating times. This reduces electricity bills by shifting amounts of power consumption from the on-peak hour consumption to the off-peak hour consumption, in terms of different “hour price”. In this paper, we propose an algorithm for scheduling multi-user power consumption and implement it on an FPGA board, using it as the MCU. This algorithm for discrete power level tasks scheduling is based on dynamic programming, which could find a scheduling solution close to the optimal one. We chose FPGA as our system’s controller because FPGA has low complexity, parallel processing capability, a large amount of I/O interface for further development and is programmable on both software and hardware. In conclusion, it costs little time running on FPGA board and the solution obtained is good enough for the consumers.
Resumo:
Since the early days of logic programming, researchers in the field realized the potential for exploitation of parallelism present in the execution of logic programs. Their high-level nature, the presence of nondeterminism, and their referential transparency, among other characteristics, make logic programs interesting candidates for obtaining speedups through parallel execution. At the same time, the fact that the typical applications of logic programming frequently involve irregular computations, make heavy use of dynamic data structures with logical variables, and involve search and speculation, makes the techniques used in the corresponding parallelizing compilers and run-time systems potentially interesting even outside the field. The objective of this article is to provide a comprehensive survey of the issues arising in parallel execution of logic programming languages along with the most relevant approaches explored to date in the field. Focus is mostly given to the challenges emerging from the parallel execution of Prolog programs. The article describes the major techniques used for shared memory implementation of Or-parallelism, And-parallelism, and combinations of the two. We also explore some related issues, such as memory management, compile-time analysis, and execution visualization.