871 resultados para Panel data probit model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper explores how absorptive capacity affects the innovative performance and productivity dynamics of Spanish firms. A firm’s efficiency levels are measured using two variables: the labour productivity and the Total Factor Productivity (TFP). The theoretical framework is based on the seminal contributions of Cohen and Levinthal (1989, 1990) regarding absorptive capacity; and the applied framework is based on the four-stage structural model proposed by Crépon, Duguet and Mairesse (1998) for setting the determinants of R&D, the effects of R&D activities on innovation outputs, and the impacts of innovation on firm productivity. The present study uses a twostage structural model. In the first stage, a probit estimation is used to investigate how the sources of R&D, the absorptive capacity and a vector of the firm’s individual features influence the firm’s likelihood of developing innovations in products or processes. In the second phase, a quantile regression is used to analyze the effect of R&D sources, absorptive capacity and firm characteristics on productivity. This method shows the elasticity of each exogenous variable on productivity according to the firms’ levels of efficiency, and thus allows us to distinguish between firms that are close to the technological frontier and those that are further away from it. We used extensive firm-level panel data from 5,575 firms for the 2004-2009 period. The results show that the internal absorptive capacity has a strong impact on the productivity of firms, whereas the role of external absorptive capacity differs according to nature of the each industry and according the distance of firms from the technological frontier. Key words: R&D sources, innovation strategies, absorptive capacity, technological distance, quantile regression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use panel data from the U. S. Health and Retirement Study, 1992-2002, to estimate the effect of self-assessed health limitations on the active labor market participation of older men. Self-assessments of health are likely to be endogenous to labor supply due to justification bias and individual-specific heterogeneity in subjective evaluations. We address both concerns. We propose a semiparametric binary choice procedure that incorporates nonadditive correlated individual-specific effects. Our estimation strategy identifies and estimates the average partial effects of health and functioning on labor market participation. The results indicate that poor health plays a major role in labor market exit decisions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Theoretical and empirical approaches have stressed the existence of financial constraints in innovative activities of firms. This paper analyses the role of financial obstacles on the likelihood of abandoning an innovation project. Although a large number of innovation projects are abandoned before their completion, the empirical evidence has focused on the determinants of innovation while failed projects have received little attention. Our analysis differentiates between internal and external barriers on the probability of abandoning a project and we examine whether the effects are different depending on the stage of the innovation process. In the empirical analysis carried out for a panel data of potential innovative Spanish firms for the period 2004-2010, we use a bivariate probit model to take into account the simultaneity of financial constraints and the decision to abandon an innovation project. Our results show that financial constraints most affect the probability of abandoning an innovation project during the concept stage and that low-technological manufacturing and non-KIS service sectors are more sensitive to financial constraints.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Theoretical and empirical approaches have stressed the existence of financial constraints in innovative activities of firms. This paper analyses the role of financial obstacles on the likelihood of abandoning an innovation project. Although a large number of innovation projects are abandoned before their completion, the empirical evidence has focused on the determinants of innovation while failed projects have received little attention. Our analysis differentiates between internal and external barriers on the probability of abandoning a project and we examine whether the effects are different depending on the stage of the innovation process. In the empirical analysis carried out for a panel data of potential innovative Spanish firms for the period 2004-2010, we use a bivariate probit model to take into account the simultaneity of financial constraints and the decision to abandon an innovation project. Our results show that financial constraints most affect the probability of abandoning an innovation project during the concept stage and that low-technological manufacturing and non-KIS service sectors are more sensitive to financial constraints. Keywords: barriers to innovation, failure of innovation projects, financial constraints JEL Classifications: O31, D21

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intensification of agricultural production without a sound management and regulations can lead to severe environmental problems, as in Western Santa Catarina State, Brazil, where intensive swine production has caused large accumulations of manure and consequently water pollution. Natural resource scientists are asked by decision-makers for advice on management and regulatory decisions. Distributed environmental models are useful tools, since they can be used to explore consequences of various management practices. However, in many areas of the world, quantitative data for model calibration and validation are lacking. The data-intensive distributed environmental model AgNPS was applied in a data-poor environment, the upper catchment (2,520 ha) of the Ariranhazinho River, near the city of Seara, in Santa Catarina State. Steps included data preparation, cell size selection, sensitivity analysis, model calibration and application to different management scenarios. The model was calibrated based on a best guess for model parameters and on a pragmatic sensitivity analysis. The parameters were adjusted to match model outputs (runoff volume, peak runoff rate and sediment concentration) closely with the sparse observed data. A modelling grid cell resolution of 150 m adduced appropriate and computer-fit results. The rainfall runoff response of the AgNPS model was calibrated using three separate rainfall ranges (< 25, 25-60, > 60 mm). Predicted sediment concentrations were consistently six to ten times higher than observed, probably due to sediment trapping along vegetated channel banks. Predicted N and P concentrations in stream water ranged from just below to well above regulatory norms. Expert knowledge of the area, in addition to experience reported in the literature, was able to compensate in part for limited calibration data. Several scenarios (actual, recommended and excessive manure applications, and point source pollution from swine operations) could be compared by the model, using a relative ranking rather than quantitative predictions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this paper is twofold. First, we study the determinants of economic growth among a wide set of potential variables for the Spanish provinces (NUTS3). Among others, we include various types of private, public and human capital in the group of growth factors. Also,we analyse whether Spanish provinces have converged in economic terms in recent decades. Thesecond objective is to obtain cross-section and panel data parameter estimates that are robustto model speci¯cation. For this purpose, we use a Bayesian Model Averaging (BMA) approach.Bayesian methodology constructs parameter estimates as a weighted average of linear regression estimates for every possible combination of included variables. The weight of each regression estimate is given by the posterior probability of each model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this paper is twofold. First, we study the determinants of economic growth among a wide set of potential variables for the Spanish provinces (NUTS3). Among others, we include various types of private, public and human capital in the group of growth factors. Also,we analyse whether Spanish provinces have converged in economic terms in recent decades. Thesecond objective is to obtain cross-section and panel data parameter estimates that are robustto model speci¯cation. For this purpose, we use a Bayesian Model Averaging (BMA) approach.Bayesian methodology constructs parameter estimates as a weighted average of linear regression estimates for every possible combination of included variables. The weight of each regression estimate is given by the posterior probability of each model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La présente étude est à la fois une évaluation du processus de la mise en oeuvre et des impacts de la police de proximité dans les cinq plus grandes zones urbaines de Suisse - Bâle, Berne, Genève, Lausanne et Zurich. La police de proximité (community policing) est à la fois une philosophie et une stratégie organisationnelle qui favorise un partenariat renouvelé entre la police et les communautés locales dans le but de résoudre les problèmes relatifs à la sécurité et à l'ordre public. L'évaluation de processus a analysé des données relatives aux réformes internes de la police qui ont été obtenues par l'intermédiaire d'entretiens semi-structurés avec des administrateurs clés des cinq départements de police, ainsi que dans des documents écrits de la police et d'autres sources publiques. L'évaluation des impacts, quant à elle, s'est basée sur des variables contextuelles telles que des statistiques policières et des données de recensement, ainsi que sur des indicateurs d'impacts construit à partir des données du Swiss Crime Survey (SCS) relatives au sentiment d'insécurité, à la perception du désordre public et à la satisfaction de la population à l'égard de la police. Le SCS est un sondage régulier qui a permis d'interroger des habitants des cinq grandes zones urbaines à plusieurs reprises depuis le milieu des années 1980. L'évaluation de processus a abouti à un « Calendrier des activités » visant à créer des données de panel permettant de mesurer les progrès réalisés dans la mise en oeuvre de la police de proximité à l'aide d'une grille d'évaluation à six dimensions à des intervalles de cinq ans entre 1990 et 2010. L'évaluation des impacts, effectuée ex post facto, a utilisé un concept de recherche non-expérimental (observational design) dans le but d'analyser les impacts de différents modèles de police de proximité dans des zones comparables à travers les cinq villes étudiées. Les quartiers urbains, délimités par zone de code postal, ont ainsi été regroupés par l'intermédiaire d'une typologie réalisée à l'aide d'algorithmes d'apprentissage automatique (machine learning). Des algorithmes supervisés et non supervisés ont été utilisés sur les données à haute dimensionnalité relatives à la criminalité, à la structure socio-économique et démographique et au cadre bâti dans le but de regrouper les quartiers urbains les plus similaires dans des clusters. D'abord, les cartes auto-organisatrices (self-organizing maps) ont été utilisées dans le but de réduire la variance intra-cluster des variables contextuelles et de maximiser simultanément la variance inter-cluster des réponses au sondage. Ensuite, l'algorithme des forêts d'arbres décisionnels (random forests) a permis à la fois d'évaluer la pertinence de la typologie de quartier élaborée et de sélectionner les variables contextuelles clés afin de construire un modèle parcimonieux faisant un minimum d'erreurs de classification. Enfin, pour l'analyse des impacts, la méthode des appariements des coefficients de propension (propensity score matching) a été utilisée pour équilibrer les échantillons prétest-posttest en termes d'âge, de sexe et de niveau d'éducation des répondants au sein de chaque type de quartier ainsi identifié dans chacune des villes, avant d'effectuer un test statistique de la différence observée dans les indicateurs d'impacts. De plus, tous les résultats statistiquement significatifs ont été soumis à une analyse de sensibilité (sensitivity analysis) afin d'évaluer leur robustesse face à un biais potentiel dû à des covariables non observées. L'étude relève qu'au cours des quinze dernières années, les cinq services de police ont entamé des réformes majeures de leur organisation ainsi que de leurs stratégies opérationnelles et qu'ils ont noué des partenariats stratégiques afin de mettre en oeuvre la police de proximité. La typologie de quartier développée a abouti à une réduction de la variance intra-cluster des variables contextuelles et permet d'expliquer une partie significative de la variance inter-cluster des indicateurs d'impacts avant la mise en oeuvre du traitement. Ceci semble suggérer que les méthodes de géocomputation aident à équilibrer les covariables observées et donc à réduire les menaces relatives à la validité interne d'un concept de recherche non-expérimental. Enfin, l'analyse des impacts a révélé que le sentiment d'insécurité a diminué de manière significative pendant la période 2000-2005 dans les quartiers se trouvant à l'intérieur et autour des centres-villes de Berne et de Zurich. Ces améliorations sont assez robustes face à des biais dus à des covariables inobservées et covarient dans le temps et l'espace avec la mise en oeuvre de la police de proximité. L'hypothèse alternative envisageant que les diminutions observées dans le sentiment d'insécurité soient, partiellement, un résultat des interventions policières de proximité semble donc être aussi plausible que l'hypothèse nulle considérant l'absence absolue d'effet. Ceci, même si le concept de recherche non-expérimental mis en oeuvre ne peut pas complètement exclure la sélection et la régression à la moyenne comme explications alternatives. The current research project is both a process and impact evaluation of community policing in Switzerland's five major urban areas - Basel, Bern, Geneva, Lausanne, and Zurich. Community policing is both a philosophy and an organizational strategy that promotes a renewed partnership between the police and the community to solve problems of crime and disorder. The process evaluation data on police internal reforms were obtained through semi-structured interviews with key administrators from the five police departments as well as from police internal documents and additional public sources. The impact evaluation uses official crime records and census statistics as contextual variables as well as Swiss Crime Survey (SCS) data on fear of crime, perceptions of disorder, and public attitudes towards the police as outcome measures. The SCS is a standing survey instrument that has polled residents of the five urban areas repeatedly since the mid-1980s. The process evaluation produced a "Calendar of Action" to create panel data to measure community policing implementation progress over six evaluative dimensions in intervals of five years between 1990 and 2010. The impact evaluation, carried out ex post facto, uses an observational design that analyzes the impact of the different community policing models between matched comparison areas across the five cities. Using ZIP code districts as proxies for urban neighborhoods, geospatial data mining algorithms serve to develop a neighborhood typology in order to match the comparison areas. To this end, both unsupervised and supervised algorithms are used to analyze high-dimensional data on crime, the socio-economic and demographic structure, and the built environment in order to classify urban neighborhoods into clusters of similar type. In a first step, self-organizing maps serve as tools to develop a clustering algorithm that reduces the within-cluster variance in the contextual variables and simultaneously maximizes the between-cluster variance in survey responses. The random forests algorithm then serves to assess the appropriateness of the resulting neighborhood typology and to select the key contextual variables in order to build a parsimonious model that makes a minimum of classification errors. Finally, for the impact analysis, propensity score matching methods are used to match the survey respondents of the pretest and posttest samples on age, gender, and their level of education for each neighborhood type identified within each city, before conducting a statistical test of the observed difference in the outcome measures. Moreover, all significant results were subjected to a sensitivity analysis to assess the robustness of these findings in the face of potential bias due to some unobserved covariates. The study finds that over the last fifteen years, all five police departments have undertaken major reforms of their internal organization and operating strategies and forged strategic partnerships in order to implement community policing. The resulting neighborhood typology reduced the within-cluster variance of the contextual variables and accounted for a significant share of the between-cluster variance in the outcome measures prior to treatment, suggesting that geocomputational methods help to balance the observed covariates and hence to reduce threats to the internal validity of an observational design. Finally, the impact analysis revealed that fear of crime dropped significantly over the 2000-2005 period in the neighborhoods in and around the urban centers of Bern and Zurich. These improvements are fairly robust in the face of bias due to some unobserved covariate and covary temporally and spatially with the implementation of community policing. The alternative hypothesis that the observed reductions in fear of crime were at least in part a result of community policing interventions thus appears at least as plausible as the null hypothesis of absolutely no effect, even if the observational design cannot completely rule out selection and regression to the mean as alternative explanations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper aims at investigating the socio-cultural factors that affect leisure-time sport participation in Switzerland. Data drawn from 8 waves of the Swiss Household Panel is used to evaluate a probit model with random effects, that takes into account the socioeconomic and demographic characteristics of the respondents. In line with existing literature, findings from the multivariate analysis show inequalities in sport involvement in Switzerland. These are significantly related to age, income, education, citizenship and cultural aspects. Appropriate and targeted policies promoting participation in sports among the community can be found on the basis of the critical modifiers in the model and their impact.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper aims to analyse cooperation in R&D in the automobile industry in Spain. It first examines to what extent firms cooperate with external actors in the field of technological innovation, and if so, with what type of cooperation partner, paying special attention to the differentiation according to the size of the firms. Second, it aims to study how the firm’s size may affect not only the decision of cooperating but also with which type of partner, while controlling for other determinants that have been considered in the literature as main drivers of collaborative activities in R&D. We use data provided by the Technological Innovation Panel in the 2006-2008 period for firms in the automotive sector. We estimate a bivariate probit model that takes into account the two types of cooperation mostly present in the automotive industry, vertical and institutional, explicitly considering the interdependencies that may arise in the simultaneous choice of both.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper aims to analyse cooperation in R&D in the automobile industry in Spain. It first examines to what extent firms cooperate with external actors in the field of technological innovation, and if so, with what type of cooperation partner, paying special attention to the differentiation according to the size of the firms. Second, it aims to study how the firm’s size may affect not only the decision of cooperating but also with which type of partner, while controlling for other determinants that have been considered in the literature as main drivers of collaborative activities in R&D. We use data provided by the Technological Innovation Panel in the 2006-2008 period for firms in the automotive sector. We estimate a bivariate probit model that takes into account the two types of cooperation mostly present in the automotive industry, vertical and institutional, explicitly considering the interdependencies that may arise in the simultaneous choice of both.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El proyecto de investigación parte de la dinámica del modelo de distribución tercerizada para una compañía de consumo masivo en Colombia, especializada en lácteos, que para este estudio se ha denominado “Lactosa”. Mediante datos de panel con estudio de caso, se construyen dos modelos de demanda por categoría de producto y distribuidor y mediante simulación estocástica, se identifican las variables relevantes que inciden sus estructuras de costos. El problema se modela a partir del estado de resultados por cada uno de los cuatro distribuidores analizados en la región central del país. Se analiza la estructura de costos y el comportamiento de ventas dado un margen (%) de distribución logístico, en función de las variables independientes relevantes, y referidas al negocio, al mercado y al entorno macroeconómico, descritas en el objeto de estudio. Entre otros hallazgos, se destacan brechas notorias en los costos de distribución y costos en la fuerza de ventas, pese a la homogeneidad de segmentos. Identifica generadores de valor y costos de mayor dispersión individual y sugiere uniones estratégicas de algunos grupos de distribuidores. La modelación con datos de panel, identifica las variables relevantes de gestión que inciden sobre el volumen de ventas por categoría y distribuidor, que focaliza los esfuerzos de la dirección. Se recomienda disminuir brechas y promover desde el productor estrategias focalizadas a la estandarización de procesos internos de los distribuidores; promover y replicar los modelos de análisis, sin pretender remplazar conocimiento de expertos. La construcción de escenarios fortalece de manera conjunta y segura la posición competitiva de la compañía y sus distribuidores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since 1991 Colombia has had a market-determined Peso - US Dollar Nominal Exchange Rate (NER), after more than 20 years of controlled and multiple exchange rates. The behavior (revaluation / devaluation) of the NER is constantly reported in news, editorials and op-eds of major newspapers of the nation with particular attention to revaluation. The uneven reporting of revaluation episodes can be explained by the existence of an interest group particulary affected by revaluation, looking to increase awareness and sympathy for help from public institutions. Using the number of news and op-eds from a major Colombian newspaper, it is shown that there is an over-reporting of revaluation episodes in contrast to devaluation ones. Secondly, using text analysis upon the content of the news, it is also shown that the words devaluation and revaluation are far apart in the distribution of words within the news; and revaluation is highly correlated with words related to: public institutions, exporters and the need of assistance. Finally it is also shown that the probability of the central bank buying US dollars to lessen revaluation effects increases with the number of news; even though the central bank allegedly intervenes in the exchange rate market only to tame volatility or accumulate international reserves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a simple Ordered Probit model to analyse the monetary policy reaction function of the Colombian Central Bank. There is evidence that the reaction function is asymmetric, in the sense that the Bank increases the Bank rate when the gap between observed inflation and the inflation target (lagged once) is positive, but it does not reduce the Bank rate when the gap is negative. This behaviour suggests that the Bank is more interested in fulfilling the announced inflation target rather than in reducing inflation excessively. The forecasting performance of the model, both within and beyond the estimation period, appears to be particularly good.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data assimilation is a sophisticated mathematical technique for combining observational data with model predictions to produce state and parameter estimates that most accurately approximate the current and future states of the true system. The technique is commonly used in atmospheric and oceanic modelling, combining empirical observations with model predictions to produce more accurate and well-calibrated forecasts. Here, we consider a novel application within a coastal environment and describe how the method can also be used to deliver improved estimates of uncertain morphodynamic model parameters. This is achieved using a technique known as state augmentation. Earlier applications of state augmentation have typically employed the 4D-Var, Kalman filter or ensemble Kalman filter assimilation schemes. Our new method is based on a computationally inexpensive 3D-Var scheme, where the specification of the error covariance matrices is crucial for success. A simple 1D model of bed-form propagation is used to demonstrate the method. The scheme is capable of recovering near-perfect parameter values and, therefore, improves the capability of our model to predict future bathymetry. Such positive results suggest the potential for application to more complex morphodynamic models.