986 resultados para Panax ginseng CA. Meyer. Glycine. Ketamine. Toxicity. Behavior. NMDA. Rats
Resumo:
Energetic cost of digging behavior in workers of the leaf-cutting ant Atta sexdens (Fabricius). During nest excavation, leaf-cutting ant workers undergo reduction in their body reserve, particularly carbohydrates. In order to estimate the energetic cost of digging, groups of 30 workers of the leaf-cutting ant Atta sexdens were sealed in a hermetic chamber for 24, 48 and 72 hours, with and without soil for digging, and had the CO2 concentration measured using respirometric chambers as well as volume of soil excavated (g). As expected, the worker groups that carried out soil excavation expelled more carbon dioxide than the groups that did not excavate. Therefore, a worker with body mass of 9.65 ± 1.50 mg dug in average 0.85 ± 0.27 g of soil for 24 hours, consuming ca. 0.58 ± 0.23 J. In this study, we calculate that the energetic cost of excavation per worker per day in the experimental set-up was ca. 0.58 J.
Resumo:
Alleviation of Al rhizotoxicity by Ca and Mg can differ among species and genotypes. Root elongation of soybean [Glycine max (L.) Merr.] line N93-S-179 and cvs. Young and Ransom exposed to varying concentrations of Al, Ca and Mg were compared in two experiments using a vertically split root system. Roots extending from a surface compartment with limed soil grew for 12 days into a subsurface compartment with nutrient solution treatments maintained at pH 4.6 with either 0 or 15 µmol L-1 Al. Calcium and Mg concentrations in treatments ranging from 0 to 20 mmol L-1. Although an adequate supply of Mg was provided in the surface soil compartment for soybean top growth, an inclusion of Mg was necessary in the subsurface solutions to promote root elongation in both the presence and absence of Al. In the absence of Al in the subsurface solution, tap root length increased by 74 % and lateral root length tripled when Mg in the solutions was increased from 0 to either 2 or 10 mmol L-1. In the presence of 15 µmol L-1 Al, additions of 2 or 10 mmol L-1 Mg increased tap root length fourfold and lateral root length by a factor of 65. This high efficacy of Mg may have masked differences in Al tolerance between genotypes N93 and Young. Magnesium was more effective than Ca in alleviating Al rhizotoxicity, and its ameliorative properties could not be accounted for by estimated electrostatic changes in root membrane potential and Al3+ activity at the root surface. The physiological mechanisms of Mg alleviation of Al injury in roots, however, are not known.
Resumo:
A large proportion of soybean fields in Brazil are currently cultivated in the Cerrado region, where the area planted with this crop is growing considerably every year. Soybean cultivation in acid soils is also increasing worldwide. Since the levels of toxic aluminum (Al) in these acid soils is usually high it is important to understand how cations can reduce Al rhizotoxicity in soybean. In the present study we evaluated the ameliorative effect of nine divalent cations (Ca, Mg, Mn, Sr, Sn, Cu, Zn, Co and Ba) in solution culture on Al rhizotoxicity in soybean. The growth benefit of Ca and Mg to plants in an acid Inceptisol was also evaluated. In this experiment soil exchangeable Ca:Mg ratios were adjusted to reach 10 and 60 % base saturation, controlled by different amounts of CaCl2 or MgCl2 (at proportions from 100:0 up to 0:100), without altering the soil pH level. The low (10 %) and adequate (60 %) base saturation were used to examine how plant roots respond to Al at distinct (Ca + Mg)/Al ratios, as if they were growing in soils with distinct acidity levels. Negative and positive control treatments consisted of absence (under native soil or undisturbed conditions) or presence of lime (CaCO3) to reach 10 and 60 % base saturation, respectively. It was observed that in the absence of Aluminum, Cu, Zn, Co and Sn were toxic even at a low concentration (25 µmol L-1), while the effect of Mn, Ba, Sr and Mg was positive or absent on soybean root elongation when used in concentrations up to 100 µmol L-1. At a level of 10 µmol L-1 Al, root growth was only reverted to the level of control plants by the Mg treatment. Higher Tin doses led to a small alleviation of Al rhizotoxicity, while the other cations reduced root growth or had no effect. This is an indication that the Mg effect is ion-specific and not associated to an electrostatic protection mechanism only, since all ions were divalent and used at low concentrations. An increased exchangeable Ca:Mg ratio (at constant soil pH) in the acid soil almost doubled the soybean shoot and root dry matter even though treatments did not modify soil pH and exchangeable Al3+. This indicates a more efficient alleviation of Al toxicity by Mg2+ than by Ca2+. The reason for the positive response to Mg2+ was not the supply of a deficient nutrient because CaCO3 increased soybean growth by increasing soil pH without inducing Mg2+ deficiency. Both in hydroponics and acid soil, the reduction in Al toxicity was accompanied by a lower Al accumulation in plant tissue, suggesting a competitive cation absorption and/or exclusion of Al from plant tissue stimulated by an Mg-induced physiological mechanism.
Resumo:
The protective effect of cations, especially Ca and Mg, against aluminum (Al) rhizotoxicity has been extensively investigated in the last decades. The mechanisms by which the process occurs are however only beginning to be elucidated. Six experiments were carried out here to characterize the protective effect of Mg application in relation to timing, location and crop specificity: Experiment 1 - Protective effect of Mg compared to Ca; Experiment 2 - Protective effect of Mg on distinct root classes of 15 soybean genotypes; Experiment 3 - Effect of timing of Mg supply on the response of soybean cvs. to Al; Experiment 4 - Investigating whether the Mg protective effect is apoplastic or simplastic using a split-root system; Experiment 5 - Protective effect of Mg supplied in solution or foliar spraying, and Experiment 6 - Protective effect of Mg on Al rhizotoxicity in other crops. It was found that the addition of 50 mmol L-1 Mg to solutions containing toxic Al increased Al tolerance in 15 soybean cultivars. This caused soybean cultivars known as Al-sensitive to behave as if they were tolerant. The protective action of Mg seems to require constant Mg supply in the external medium. Supplying Mg up to 6 h after root exposition to Al was sufficient to maintain normal soybean root growth, but root growth was not recovered by Mg addition 12 h after Al treatments. Mg application to half of the root system not exposed to Al was not sufficient to prevent Al toxicity on the other half exposed to Al without Mg in rooting medium, indicating the existence of an external protection mechanism of Mg. Foliar spraying with Mg also failed to decrease Al toxicity, indicating a possible apoplastic role of Mg. The protective effect of Mg appeared to be soybean-specific since Mg supply did not substantially improve root elongation in sorghum, wheat, corn, cotton, rice, or snap bean when grown in the presence of toxic Al concentrations.
Resumo:
The toxicity and environmental behavior of new pH-sensitive surfactants from lysine are presented. Three different chemical structures are studied: surfactants with one amino acid and one alkyl chain, surfactants with two amino acids on the polar head and one alkyl chain, and gemini surfactants. The pH sensitivity of these compounds can be tuned by modifying their chemical structures. Cytotoxicity has been evaluated using erythrocytes and fibroblast cells. The toxic effects against these cells depend on the hydrophobicity of the molecules as well as their cationic charge density. The effect of hydrophobicity and cationic charge density on toxicity is different for each type of cells. For erythrocytes, the toxicity increases as hydrophobicity and charge density increases. Nevertheless, for fibroblasts cationic charge density affects cytotoxicity in the opposite way: the higher charge density, the lower the toxicity. The effect of the pH on hemolysis has been evaluated in detail. The aquatic toxicity was established using Daphnia magna. All surfactants yielded EC50 values considerably higher than that reported for cationic surfactants based on quaternary ammonium groups. Finally, their biodegradability was evaluated using the CO2 headspace test (ISO 14593). These lysine derivatives showed high levels of biodegradation under aerobic conditions and can be classified as"readily biodegradable compounds".
Resumo:
Laboratory and greenhouse studies were conducted with an artificial dry diet to rear nymphs, and with an artificial plant as substrate for egg laying by the southern green stink bug, Nezara viridula (L.). The artificial diet was composed of: soybean protein (15 g); potato starch (7.5 g); dextrose (7.5 g); sucrose (2.5 g); cellulose (12.5 g); vitamin mixture (niacinamide 1 g, calcium pantothenate 1 g, thiamine 0.25 g, riboflavin 0.5 g, pyridoxine 0.25 g, folic acid 0.25 g, biotin 0.02 mL, vitamin B12 1 g - added to 1,000 mL of distilled water) (5.0 mL); soybean oil (20 mL); wheat germ (17.9 g); and water (30 mL). Nymphs showed normal feeding behavior when fed on the artificial diet. Nymphal development time was longer than or similar to that of nymphs fed on soybean pods. Total nymphal mortality was low (ca. 30%), both for nymphs reared on the artificial diet, and for nymphs fed on soybean pods. At adult emergence, fresh body weights were significantly (P<0.01) less on the artificial diet than on soybean pods. Despite the lower adult survivorship and fecundity on artificial plants than on soybean plants, it was demonstrated for the first time that a model simulating a natural plant, can be used as a substrate for egg mass laying, in conjunction with the artificial diet.
Resumo:
Phyllophaga cuyabana is a univoltine species and its development occurs completely underground. Its control by conventional methods, such as chemical and biological insecticides, is difficult, so it is important to understand its dispersion, reproduction, and population behavior in order to determine best pest management strategies. The objective of this work was to study the behavior of adults of P. cuyabana. This study was carried out in the laboratory, greenhouse and field sites in Paraná State, Brazil (24º25' S and 52º48' W), during four seasons. The results obtained demonstrate that: a) P. cuyabana adults have a synchronized short-flight period when mating and reproduction occurs; b) adults tend to aggregate in specific sites for mating; c) the majority of adults left the soil on alternate nights; d) the choice of mating and oviposition sites was made by females before copulation, since after copulation adults did not fly from or bury themselves at nearby locations; e) females that fed on leaves after mating, oviposited more eggs than females that had not fed;f) plant species such as sunflower (Helianthus annuus) and the Crotalaria juncea are important food sources for adults.
Resumo:
Understanding how plants sense and respond to heat stress is central to improve crop tolerance and productivity. Recent findings in Physcomitrella patensdemonstrated that the controlled passage of calcium ions across the plasma membrane regulates the heat shock response (HSR). To investigate the effect of membrane lipid composition on the plant HSR, we acclimated P. patens to a slightly elevated yet physiological growth temperature and analysed the signature of calcium influx under a mild heat shock. Compared to tissues grown at 22°C, tissues grown at 32°C had significantly higher overall membrane lipid saturation level and, when submitted to a short heat shock at 35°C, displayed a noticeably reduced calcium influx and a consequent reduced heat shock gene expression. These results show that temperature differences, rather than the absolute temperature, determine the extent of the plant HSR and indicate that membrane lipid composition regulates the calcium-dependent heat-signaling pathway.
Resumo:
The toxicity and environmental behavior of new pH-sensitive surfactants from lysine are presented. Three different chemical structures are studied: surfactants with one amino acid and one alkyl chain, surfactants with two amino acids on the polar head and one alkyl chain, and gemini surfactants. The pH sensitivity of these compounds can be tuned by modifying their chemical structures. Cytotoxicity has been evaluated using erythrocytes and fibroblast cells. The toxic effects against these cells depend on the hydrophobicity of the molecules as well as their cationic charge density. The effect of hydrophobicity and cationic charge density on toxicity is different for each type of cells. For erythrocytes, the toxicity increases as hydrophobicity and charge density increases. Nevertheless, for fibroblasts cationic charge density affects cytotoxicity in the opposite way: the higher charge density, the lower the toxicity. The effect of the pH on hemolysis has been evaluated in detail. The aquatic toxicity was established using Daphnia magna. All surfactants yielded EC50 values considerably higher than that reported for cationic surfactants based on quaternary ammonium groups. Finally, their biodegradability was evaluated using the CO2 headspace test (ISO 14593). These lysine derivatives showed high levels of biodegradation under aerobic conditions and can be classified as"readily biodegradable compounds".
Resumo:
Solid state compounds of general formula M(DMCP)2.nH2O, where M represents Mg, Ca, Sr, Ba, and DMCP is 4-dimethylaminocinnamylidenepyruvate, and n = 1, except for Ca, where n = 2.5, have been prepared. Thermogravimetry, derivative thermogravimetry (TG, DTG), differential scanning calorimetry (DSC), X-ray diffraction powder patterns and complexometry were used to characterize and to study the thermal decomposition of these compounds.
Resumo:
Currently, there is a growing interest in medicinal plants, because of an increased demand for alternate therapies. In this study, the antimicrobial activity and toxicity of the essential oil of Lippia origanoides (L. origanoides) were investigated. The essential oil of L. origanoides was extracted by steam-dragging distillation and its constituents were identified by chromatography coupled with mass spectrometry. Among the 15 compounds identified, the most abundant were carvacrol (29.00%), o-cymene (25.57%), and thymol methyl ether (11.50%). The essential oil was studied in antimicrobial assays to determine the MIC and MBC. The results indicated that a concentration of 120μL/mL of oil was sufficient to inhibit the growth of the following microorganisms: Escherichia coli (ATCC 25922), Staphylococcus aureus (ATCC 25923) and Salmonella cholerasuis (ATCC 10708). Acute and chronic toxic effects of orally administered oil were investigated in Wistar rats by using standard methods. Doses of 30, 60 and 120mg/kg of the essential oil did not induce significant changes in weight, behavior or hematological and biochemical parameters in the animals. There were no signs of any histopathological changes to the liver, kidneys or heart of the treated rats, suggesting that Lippia origanoides oil is non-toxic after oral administration in acute or chronic toxicity studies. The results obtained in this study show that the essential oil of L. origanoides has a high safety margin, with no detectable toxic effects in rats treated with doses to 120mg/kg. In addition, L. origanoides oil demonstrated potent antimicrobial activity against S. aureus, E. coli and S. cholerasuis. Based on these findings, this essential oil may have practical application as a veterinary antimicrobial.
Resumo:
O presente experimento teve por objetivo estudar os efeitos da competição inter e intraespecífica envolvendo Glycine max (L.) Merril e Cyperus rotundus L. sobre as características das plantas e acúmulos de N, P, K, Ca e Mg pelas espécies envolvidas. Para tanto, estipulou-se um tratamento em que se desenvolveram três plantas de Glycine max e outro em que se desenvolveram 3 tubérculos de Cyperus rotundus por vaso. Para estudar os efeitos da competição intraespecífica, em dois outros tratamentos dobraram-se as populações por vaso. No estudo da competição interespecífica permitiu-se o desenvolvimento de três plantas de Glycine max e de três tubérculos de Cyperus rotundus num mesmo vaso. De uma maneira geral, pôde-se observar que principalmente devido às diferenças no hábito de crescimento das duas espécies, a expressão da competição inter e intraespecífica, em cada uma delas, assume aspectos distintos. No caso de Cyperus rotundus, o efeito do dobro da densidade pôde ser compensado, em parte, pela maior produção de manifestações epígeas e de tubérculos, aliados ao maior desenvolvimento dos tubérculos na menor densidade de plantio. No caso da competição interespecífica, os resultados sugerem um efeito decisivo do sombreamento de Leguminosae sobre o comportamento da Cyperaceae. Os padrões de efeitos da competição pelos nutrientes foi determinado também pelas diferenças no recrutamento dos elementos do solo pelas espécies envolvidas.
Resumo:
Foram realizados dois experimentos, em condições de casa de vegetação, no Departamento de Biologia Aplicada à Agropecuária da FCAV-UNESP de Jaboticabal, objetivando-se determinar o acúmulo de massa seca, assim como a distribuição e o acúmulo de macronutrientes durante os ciclos de vida de plantas de soja cultivar BR16, no período de outubro de 2000 a fevereiro de 2001, e de Richardia brasiliensis (poaia-branca), uma planta daninha de elevada importância para esta cultura no Brasil, especialmente em áreas de plantio direto, no período de outubro de 1998 a fevereiro de 1999. Os estudos foram realizados em delineamento experimental inteiramente casualizado, com quatro repetições. Quatro plantas cresceram em vasos com capacidade de sete litros, preenchidos com areia de rio lavada, peneirada e irrigada diariamente com solução nutritiva. Os tratamentos foram representados pelas épocas de amostragem, realizadas a intervalos de 14 dias, a saber: 22, 36, 50, 64, 78, 92, 106, 120, 134, 148, 162 e 176 dias após a emergência (DAE) das plantas de R. brasiliensis; e 21, 35, 49, 63, 77, 91, 105 e 119 DAE das plantas de soja cv. BR-16 (precoce). Em ambas as plantas, as folhas tiveram a maior partição de biomassa durante sete semanas. Para este dado, a partição foi maior para as estruturas reprodutivas em soja e nos caules para a poaia-branca. O ponto de máximo acúmulo teórico de massa seca deu-se aos 104 DAE para a soja (36,6 g por planta) e aos 146 DAE para a poaia-branca (16,4 g por planta). Da emergência até aos 50 DAE as folhas apresentaram maior participação no acúmulo de massa seca, nas duas espécies. Após 50 DAE notou-se, em ambas as espécies, uma inversão na representatividade das folhas por caules, para a espécie daninha, e por caules e posteriormente por estruturas reprodutivas, para a cultura. A taxa de absorção diária dos macronutrientes atingiu maiores valores entre 69 e 87 DAE para a soja e entre 106 a 111 DAE para a planta daninha. Levando em conta a média dos valores de pontos de inflexão observados para a cultura da soja, aos 78 DAE uma planta de soja acumula teoricamente 25,9 g de massa seca; 615,5 mg de N; 77,2 mg de P; 538,6 mg de K; 535,0 mg de Ca; 171,5 mg de Mg; e 39,5 mg de S. Para o mesmo período, uma planta de R. brasiliensis acumula teoricamente 3,7 g de massa seca; 50,8 mg de N; 3,2 mg de P; 104,4 mg de K; 127,8 mg de Ca; 18,8 mg de Mg; e 3,7 mg de S.
Resumo:
A soja é uma das principais culturas agrícolas do Brasil, sendo a sua produtividade muito influenciada pela competição exercida pelas plantas daninhas. Foram realizados dois experimentos em casa de vegetação, em Jaboticabal, SP, objetivando determinar o acúmulo de massa seca, assim como a distribuição e o acúmulo de macronutrientes em plantas de soja, no período de outubro de 2000 a fevereiro de 2001, e de Solanum americanum, no período de janeiro a maio de 1995. As plantas cresceram em vasos com capacidade de 7 litros, preenchidos com areia de rio lavada e peneirada; elas foram irrigadas diariamente com solução nutritiva. Os tratamentos foram representados pelas épocas de amostragem, realizada a intervalos de 14 dias, iniciando-se 21 dias após a emergência (DAE), até 161 DAE para S. americanum e 119 DAE para soja cv. BR-16 (precoce). O ponto de máximo acúmulo teórico de massa seca deu-se aos 104 DAE para a soja (35,0 g por planta) e 143 DAE para S. americanum (179,62 g por planta). Da emergência até 49 e 63 DAE, as folhas apresentaram maior participação no acúmulo de massa seca para soja e S. americanum, respectivamente. Após esses períodos, verificou-se, em ambas as espécies, inversão na representatividade das folhas por caules para a espécie daninha e por caules e, posteriormente, por estruturas reprodutivas, para a cultura. A taxa de absorção diária dos macronutrientes atingiu maiores valores entre 69 e 87 DAE para a soja e entre 105 e 119 DAE para a planta daninha. Considerando a média dos valores de pontos de inflexão observados para a cultura da soja, tem-se que aos 75 DAE uma planta de soja acumula teoricamente 23,9 g de massa seca, 564,4 mg de N, 7,1 mg de P, 490,8 mg de K, 487,0 mg de Ca, 156,6 mg de Mg e 36,0 mg de S. Para o mesmo período, uma planta de S. americanum acumula teoricamente 33,75 g de massa seca, 875,96 mg de N, 88,46 mg de P, 983,54 mg de K, 647,60 mg de Ca, 100,93 mg de Mg e 42,15 mg de S.
Resumo:
Recent studies indicate that glyphosate applied in post-emergence in RR soybean can eventually cause phytotoxic effects. However, there are many questions that need to be clarified in the scientific and technical contexts, involving the issue of RR soybeans regarding the use of glyphosate. This study has assessed the impact of the application of different doses and formulations of glyphosate in the reproductive period of RR soybean (R1 stage). For that purpose, an experiment in the field was conducted in two harvests (2011/12 and 2012/13), in which a 2 x 5 factorial design was used (formulations versus doses) totaling 10 treatments. In these two experiments the variables related to agronomic performance were: phytotoxicity (7, 14, 21 and 28 days after application), plant height, number of pods per plant, yield and weight of 100 grains (end of soy cycle). The results obtained allowed characterizing phytotoxicity and damages to the height and yield in RR soybean, with increasing rates of glyphosate applied in the reproductive period.