989 resultados para Pacific Decadal Oscillation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate high-resolution records of snow accumulation rates in Antarctica are crucial for estimating ice sheet mass balance and subsequent sea level change. Snowfall rates at Law Dome, East Antarctica, have been linked with regional atmospheric circulation to the mid-latitudes as well as regional Antarctic snowfall. Here, we extend the length of the Law Dome accumulation record from 750 years to 2035 years, using recent annual layer dating that extends to 22 BCE. Accumulation rates were calculated as the ratio of measured to modelled layer thicknesses, multiplied by the long-term mean accumulation rate. The modelled layer thicknesses were based on a power-law vertical strain rate profile fitted to observed annual layer thickness. The periods 380–442, 727–783 and 1970–2009 CE have above-average snow accumulation rates, while 663–704, 933–975 and 1429–1468 CE were below average, and decadal-scale snow accumulation anomalies were found to be relatively common (74 events in the 2035-year record). The calculated snow accumulation rates show good correlation with atmospheric reanalysis estimates, and significant spatial correlation over a wide expanse of East Antarctica, demonstrating that the Law Dome record captures larger-scale variability across a large region of East Antarctica well beyond the immediate vicinity of the Law Dome summit. Spectral analysis reveals periodicities in the snow accumulation record which may be related to El Niño–Southern Oscillation (ENSO) and Interdecadal Pacific Oscillation (IPO) frequencies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Madden-Julian oscillation (MJO) is a convectively coupled 30-70 day (intraseasonal) tropical atmospheric mode that drives variations in global weather, but which is poorly simulated in most atmospheric general circulation models. Over the past two decades, field campaigns and modeling experiments have suggested that tropical atmosphere-ocean interactions may sustain or amplify the pattern of enhanced and suppressed atmospheric convection that defines the MJO, and encourage its eastward propagation through the Indian and Pacific Oceans. New observations collected during the past decade have advanced our understand of the ocean response to atmospheric MJO forcing and the resulting intraseasonal sea surface temperature (SST) fluctuations. Numerous modeling studies have revealed a considerable impact of the mean state on MJO ocean-atmosphere coupled processes, as well as the importance of resolving the diurnal cycle of atmosphere--upper-ocean interactions. New diagnostic methods provide insight to atmospheric variability and physical processes associated with the MJO, but offer limited insight on the role of ocean feedbacks. Consequently, uncertainty remains concerning the role of the ocean in MJO theory. Our understanding of how atmosphere-ocean coupled processes affect the MJO can be improved by collecting observations in poorly sampled regions of MJO activity, assessing oceanic and atmospheric drivers of surface fluxes, improving the representation of upper-ocean mixing in coupled-model simulations, designing model experiments that minimize mean-state differences, and developing diagnostic tools to evaluate the nature and role of coupled ocean-atmosphere processes over the MJO cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The El Niño/Southern Oscillation (ENSO) is the leading mode of interannual climate variability. However, it is unclear how ENSO has responded to external forcing, particularly orbitally induced changes in the amplitude of the seasonal cycle during the Holocene. Here we present a reconstruction of seasonal and interannual surface conditions in the tropical Pacific Ocean from a network of high-resolution coral and mollusc records that span discrete intervals of the Holocene. We identify several intervals of reduced variance in the 2 to 7 yr ENSO band that are not in phase with orbital changes in equatorial insolation, with a notable 64% reduction between 5,000 and 3,000 years ago. We compare the reconstructed ENSO variance and seasonal cycle with that simulated by nine climate models that include orbital forcing, and find that the models do not capture the timing or amplitude of ENSO variability, nor the mid-Holocene increase in seasonality seen in the observations; moreover, a simulated inverse relationship between the amplitude of the seasonal cycle and ENSO-related variance in sea surface temperatures is not found in our reconstructions. We conclude that the tropical Pacific climate is highly variable and subject to millennial scale quiescent periods. These periods harbour no simple link to orbital forcing, and are not adequately simulated by the current generation of models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Initialising the ocean internal variability for decadal predictability studies is a new area of research and a variety of ad hoc methods are currently proposed. In this study, we explore how nudging with sea surface temperature (SST) and salinity (SSS) can reconstruct the three-dimensional variability of the ocean in a perfect model framework. This approach builds on the hypothesis that oceanic processes themselves will transport the surface information into the ocean interior as seen in ocean-only simulations. Five nudged simulations are designed to reconstruct a 150 years “target” simulation, defined as a portion of a long control simulation. The nudged simulations differ by the variables restored to, SST or SST + SSS, and by the area where the nudging is applied. The strength of the heat flux feedback is diagnosed from observations and the restoring coefficients for SSS use the same time-scale. We observed that this choice prevents spurious convection at high latitudes and near sea-ice border when nudging both SST and SSS. In the tropics, nudging the SST is enough to reconstruct the tropical atmosphere circulation and the associated dynamical and thermodynamical impacts on the underlying ocean. In the tropical Pacific Ocean, the profiles for temperature show a significant correlation from the surface down to 2,000 m, due to dynamical adjustment of the isopycnals. At mid-to-high latitudes, SSS nudging is required to reconstruct both the temperature and the salinity below the seasonal thermocline. This is particularly true in the North Atlantic where adding SSS nudging enables to reconstruct the deep convection regions of the target. By initiating a previously documented 20-year cycle of the model, the SST + SSS nudging is also able to reproduce most of the AMOC variations, a key source of decadal predictability. Reconstruction at depth does not significantly improve with amount of time spent nudging and the efficiency of the surface nudging rather depends on the period/events considered. The joint SST + SSS nudging applied everywhere is the most efficient approach. It ensures that the right water masses are formed at the right surface density, the subsequent circulation, subduction and deep convection further transporting them at depth. The results of this study underline the potential key role of SSS for decadal predictability and further make the case for sustained large-scale observations of this field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Madden-Julian Oscillation (MJO) is the dominant mode of intraseasonal variability in the Trop- ics. It can be characterised as a planetary-scale coupling between the atmospheric circulation and organised deep convection that propagates east through the equatorial Indo-Pacific region. The MJO interacts with weather and climate systems on a near-global scale and is a crucial source of predictability for weather forecasts on medium to seasonal timescales. Despite its global signifi- cance, accurately representing the MJO in numerical weather prediction (NWP) and climate models remains a challenge. This thesis focuses on the representation of the MJO in the Integrated Forecasting System (IFS) at the European Centre for Medium-Range Weather Forecasting (ECMWF), a state-of-the-art NWP model. Recent modifications to the model physics in Cycle 32r3 (Cy32r3) of the IFS led to ad- vances in the simulation of the MJO; for the first time the observed amplitude of the MJO was maintained throughout the integration period. A set of hindcast experiments, which differ only in their formulation of convection, have been performed between May 2008 and April 2009 to asses the sensitivity of MJO simulation in the IFS to the Cy32r3 convective parameterization. Unique to this thesis is the attribution of the advances in MJO simulation in Cy32r3 to the mod- ified convective parameterization, specifically, the relative-humidity-dependent formulation for or- ganised deep entrainment. Increasing the sensitivity of the deep convection scheme to environmen- tal moisture is shown to modify the relationship between precipitation and moisture in the model. Through dry-air entrainment, convective plumes ascending in low-humidity environments terminate lower in the atmosphere. As a result, there is an increase in the occurrence of cumulus congestus, which acts to moisten the mid-troposphere. Due to the modified precipitation-moisture relationship more moisture is able to build up which effectively preconditions the tropical atmosphere for the transition to deep convection. Results from this thesis suggest that a tropospheric moisture control on convection is key to simulating the interaction between the physics and large-scale circulation associated with the MJO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the teleconnections from the tropical Atlantic to the Indo-Pacific region from inter-annual to centennial time scales will be reviewed. Identified teleconnections and hypotheses on mechanisms at work are reviewed and further explored in a century-long pacemaker coupled ocean-atmosphere simulation ensemble. There is a substantial impact of the tropical Atlantic on the Pacific region at inter-annual time scales. An Atlantic Niño (Niña) event leads to rising (sinking) motion in the Atlantic region, which is compensated by sinking (rising) motion in the central-western Pacific. The sinking (rising) motion in the central-western Pacific induces easterly (westerly) surface wind anomalies just to the west, which alter the thermocline. These perturbations propagate eastward as upwelling (downwelling) Kelvin-waves, where they increase the probability for a La Niña (El Niño) event. Moreover, tropical North Atlantic sea surface temperature anomalies are also able to lead La Niña/El Niño development. At multidecadal time scales, a positive (negative) Atlantic Multidecadal Oscillation leads to a cooling (warming) of the eastern Pacific and a warming (cooling) of the western Pacific and Indian Ocean regions. The physical mechanism for this impact is similar to that at inter-annual time scales. At centennial time scales, the Atlantic warming induces a substantial reduction of the eastern Pacific warming even under CO2 increase and to a strong subsurface cooling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Observations and climate models suggest significant decadal variability within the North Atlantic subpolar gyre (NA SPG), though observations are sparse and models disagree on the details of this variability. Therefore, it is important to understand 1) the mechanisms of simulated decadal variability, 2) which parts of simulated variability are more faithful representations of reality, and 3) the implications for climate predictions. Here, we investigate the decadal variability in the NA SPG in the state-of-the-art, high resolution (0.25◦ ocean resolution), climate model ‘HadGEM3’. We find a decadal mode with a period of 17 years that explains 30% of the annual variance in related indices. The mode arises due to the advection of heat content anomalies, and shows asymmetries in the timescale of phase reversal between positive and negative phases. A negative feedback from temperature-driven density anomalies in the Labrador Sea (LS) allows for the phase reversal. The North Atlantic Oscillation (NAO), which exhibits the same periodicity, amplifies the mode. The atmosphere-ocean coupling is stronger during positive rather than negative NAO states, explaining the asymmetry. Within the NA SPG, there is potential predictability arising partly from this mode for up to 5 years. There are important similarities between observed and simulated variability, such as the apparent role for the propagation of heat content anomalies. However, observations suggest interannual LS density anomalies are salinity-driven. Salinity control of density would change the temperature feedback to the south, possibly limiting real-world predictive skill in the southern NA SPG with this model. Finally, to understand the diversity of behaviours, we analyse 42 present-generation climate models. Temperature and salinity biases are found to systematically influence the driver of density variability in the LS. Resolution is a good predictor of the biases. The dependence of variability on the background state has important implications for decadal predictions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the development and basic evaluation of decadal predictions produced using the HiGEM coupled climate model. HiGEM is a higher resolution version of the HadGEM1 Met Office Unified Model. The horizontal resolution in HiGEM has been increased to 1.25◦ × 0.83◦ in longitude and latitude for the atmosphere, and 1/3◦ × 1/3◦ globally for the ocean. The HiGEM decadal predictions are initialised using an anomaly assimilation scheme that relaxes anomalies of ocean temperature and salinity to observed anomalies. 10 year hindcasts are produced for 10 start dates (1960, 1965,..., 2000, 2005). To determine the relative contributions to prediction skill from initial conditions and external forcing, the HiGEM decadal predictions are compared to uninitialised HiGEM transient experiments. The HiGEM decadal predictions have substantial skill for predictions of annual mean surface air temperature and 100 m upper ocean temperature. For lead times up to 10 years, anomaly correlations (ACC) over large areas of the North Atlantic Ocean, the Western Pacific Ocean and the Indian Ocean exceed values of 0.6. Initialisation of the HiGEM decadal predictions significantly increases skill over regions of the Atlantic Ocean,the Maritime Continent and regions of the subtropical North and South Pacific Ocean. In particular, HiGEM produces skillful predictions of the North Atlantic subpolar gyre for up to 4 years lead time (with ACC > 0.7), which are significantly larger than the uninitialised HiGEM transient experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The South American Monsoon System (SAMS) is characterised by intense convective activity and precipitation during austral summer. This study investigates changes in the onset, demise and duration of SAMS during 1948-2008. The results show a significant change in these characteristics in the early 1970s. Onset becomes steadily earlier from 1948 to early 1970s and has occurred earlier than 23-27 October after 1972-1973. Demise dates have remained later than 21-25 April after the mid-to-late 1970s. SAMS duration shows a statistical changepoint in the summer of 1971-1972 such that the mean duration was similar to 170 days (1948-1972) and 195 days (1972-1982). Vertically integrated moisture flux is used to diagnose changes in mean state and reveal statistically significant increases over South America after 1971-1972. Copyright. (C) 2010 Royal Meteorological Society

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Examples are presented of inter-hemispheric comparison of instrumental climate and paleoclimate proxy records from the Americas for different temporal scales. Despite a certain symmetry of seasonal precipitation patterns along the PEP 1 transect, decadal variability of winter precipitation shows different characteristics in terms of amplitude and frequency in both the last 100 and last 1000 years. Such differences in variability are also seen in a comparison of time series of different El Nino/Southern Oscillation proxy records from North and South America, however, these differences do not appear to affect the spatial correlation with Pacific sea surface temperature patterns. Local and regional differences in response to climate change are even more pronounced for records with lower temporal resolution, and inter-hemispheric synchroneity may or may not be indicative of the same forcing. This aspect is illustrated in an inter-hemispheric comparison of the last 1000 years of glacier variability, and of the full- and late-glacial lake level history.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growth parameters and the mortality rates of the Scomber japonicus peruanus (Chub mackerel) were studied based on monthly data of frequency of fork length classes obtained from commercial landings off the Peruvian coast from 1996 to 1998. The asymptotic body length and growth rate values obtained by the ELEFAN I (Electronic Length Frequency Analysis) ranged from 40.20 cm to 42.20 cm and from 0.38 to 0.39, respectively. The oscillation amplitude was 0.60; the Winter point values varied from 0.50 to 0.60 and the performance index from 2.79 to 2.84. The total mortality rate of the Chub mackerel obtained by the linearized catch curve oscillated between 1.68 and 3.35. The rate of fishing mortality varied from 1.16 to 2.78 and the exploitation rate from 0.68 to 0.84. The annual rate of natural mortality estimated by the Pauly`s method ranged from 0.52 to 0.53. The results obtained allow us to conclude that the longevity of the Chub mackerel was slightly over seven years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A numerical model for studying the influences of deep convective cloud systems on photochemistry was developed based on a non-hydrostatic meteorological model and chemistry from a global chemistry transport model. The transport of trace gases, the scavenging of soluble trace gases, and the influences of lightning produced nitrogen oxides (NOx=NO+NO2) on the local ozone-related photochemistry were investigated in a multi-day case study for an oceanic region located in the tropical western Pacific. Model runs considering influences of large scale flows, previously neglected in multi-day cloud resolving and single column model studies of tracer transport, yielded that the influence of the mesoscale subsidence (between clouds) on trace gas transport was considerably overestimated in these studies. The simulated vertical transport and scavenging of highly soluble tracers were found to depend on the initial profiles, reconciling contrasting results from two previous studies. Influences of the modeled uptake of trace gases by hydrometeors in the liquid and the ice phase were studied in some detail for a small number of atmospheric trace gases and novel aspects concerning the role of the retention coefficient (i.e. the fraction of a dissolved trace gas that is retained in the ice phase upon freezing) on the vertical transport of highly soluble gases were illuminated. Including lightning NOx production inside a 500 km 2-D model domain was found to be important for the NOx budget and caused small to moderate changes in the domain averaged ozone concentrations. A number of sensitivity studies yielded that the fraction of lightning associated NOx which was lost through photochemical reactions in the vicinity of the lightning source was considerable, but strongly depended on assumptions about the magnitude and the altitude of the lightning NOx source. In contrast to a suggestion from an earlier study, it was argued that the near zero upper tropospheric ozone mixing ratios which were observed close to the study region were most probably not caused by the formation of NO associated with lightning. Instead, it was argued in agreement with suggestions from other studies that the deep convective transport of ozone-poor air masses from the relatively unpolluted marine boundary layer, which have most likely been advected horizontally over relatively large distances (both before and after encountering deep convection) probably played a role. In particular, it was suggested that the ozone profiles observed during CEPEX (Central Equatorial Pacific Experiment) were strongly influenced by the deep convection and the larger scale flow which are associated with the intra-seasonal oscillation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The western North Pacific (WNP) is the area of the world most frequently affected by tropical cyclones (TCs). However, little is known about the socio-economic impacts of TCs in this region, probably because of the limited relevant loss data. Here, loss data from Munich RE's NatCatSERVICE database is used, a high-quality and widely consulted database of natural disasters. In the country-level loss normalisation technique we apply, the original loss data are normalised to present-day exposure levels by using the respective country's nominal gross domestic product at purchasing power parity as a proxy for wealth. The main focus of our study is on the question of whether the decadal-scale TC variability observed in the Northwest Pacific region in recent decades can be shown to manifest itself economically in an associated variability in losses. It is shown that since 1980 the frequency of TC-related loss events in the WNP exhibited, apart from seasonal and interannual variations, interdecadal variability with a period of about 22 yr – driven primarily by corresponding variations of Northwest Pacific TCs. Compared to the long-term mean, the number of loss events was found to be higher (lower) by 14% (9%) in the positive (negative) phase of the decadal-scale WNP TC frequency variability. This was identified for the period 1980–2008 by applying a wavelet analysis technique. It was also possible to demonstrate the same low-frequency variability in normalised direct economic losses from TCs in the WNP region. The identification of possible physical mechanisms responsible for the observed decadal-scale Northwest Pacific TC variability will be the subject of future research, even if suggestions have already been made in earlier studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atmospheric circulation modes are important concepts in understanding the variability of atmospheric dynamics. Assuming their spatial patterns to be fixed, such modes are often described by simple indices from rather short observational data sets. The increasing length of reanalysis products allows these concepts and assumptions to be scrutinised. Here we investigate the stability of spatial patterns of Northern Hemisphere teleconnections by using the Twentieth Century Reanalysis as well as several control and transient millennium-scale simulations with coupled models. The observed and simulated centre of action of the two major teleconnection patterns, the North Atlantic Oscillation (NAO) and to some extent the Pacific North American (PNA), are not stable in time. The currently observed dipole pattern of the NAO, its centre of action over Iceland and the Azores, split into a north–south dipole pattern in the western Atlantic with a wave train pattern in the eastern part, connecting the British Isles with West Greenland and the eastern Mediterranean during the period 1940–1969 AD. The PNA centres of action over Canada are shifted southwards and over Florida into the Gulf of Mexico during the period 1915–1944 AD. The analysis further shows that shifts in the centres of action of either teleconnection pattern are not related to changes in the external forcing applied in transient simulations of the last millennium. Such shifts in their centres of action are accompanied by changes in the relation of local precipitation and temperature with the overlying atmospheric mode. These findings further undermine the assumption of stationarity between local climate/proxy variability and large-scale dynamics inherent when using proxy-based reconstructions of atmospheric modes, and call for a more robust understanding of atmospheric variability on decadal timescales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The decadal-scale variability in winter hazardous winds in northern Switzerland from 1871 to present is investigated in the Twentieth Century Reanalysis (20CR). Independent wind speed measurements taken at Zurich climate station show that the interannual and decadal variability in hazardous winds in northern Switzerland is realistically represented in the 20CR. Both time series exhibit pronounced decadal-scale variability with periods between approximately 36 and 47 years. At these periodicities, the hazardous wind variability in northern Switzerland is positively correlated with the variability in the North Atlantic Oscillation, however the strength and statistical significance of their co-variability varies over time.