964 resultados para PYRAMIDAL NEURONS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this study was to examine whether variability in the shape of dendritic spines affects protein movement within the plasma membrane. Using a combination of confocal microscopy and the fluorescence loss in photobleaching technique in living hippocampal CA1 pyramidal neurons expressing membrane-linked GFP, we observed a clear correlation between spine shape parameters and the diffusion and compartmentalization of membrane-associated proteins. The kinetics of membrane-linked GFP exchange between the dendritic shaft and the spine head compartment were slower in dendritic spines with long necks and/or large heads than in those with short necks and/or small heads. Furthermore, when the spine area was reduced by eliciting epileptiform activity, the kinetics of protein exchange between the spine compartments exhibited a concomitant decrease. As synaptic plasticity is considered to involve the dynamic flux by lateral diffusion of membrane-bound proteins into and out of the synapse, our data suggest that spine shape represents an important parameter in the susceptibility of synapses to undergo plastic change.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neuropathic pain is caused by long-term modifications of neuronal function in the peripheral nervous system, the spinal cord, and supraspinal areas. Although functional changes in the forebrain are thought to contribute to the development of persistent pain, their significance and precise subcellular nature remain unexplored. Using somatic and dendritic whole-cell patch-clamp recordings from neurons in the anterior cingulate cortex, we discovered that sciatic nerve injury caused an activity-dependent dysfunction of hyperpolarization-activated cyclic nucleotide-regulated (HCN) channels in the dendrites of layer 5 pyramidal neurons resulting in enhanced integration of excitatory postsynaptic inputs and increased neuronal firing. Specific activation of the serotonin receptor type 7 (5-HT7R) alleviated the lesion-induced pathology by increasing HCN channel function, restoring normal dendritic integration, and reducing mechanical pain hypersensitivity in nerve-injured animals in vivo. Thus, serotoninergic neuromodulation at the forebrain level can reverse the dendritic dysfunction induced by neuropathic pain and may represent a potential therapeutical target.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the leading approaches to non-invasively treat a variety of brain disorders is transcranial magnetic stimulation (TMS). However, despite its clinical prevalence, very little is known about the action of TMS at the cellular level let alone what effect it might have at the subcellular level (e.g. dendrites). Here, we examine the effect of single-pulse TMS on dendritic activity in layer 5 pyramidal neurons of the somatosensory cortex using an optical fiber imaging approach. We find that TMS causes GABAB-mediated inhibition of sensory-evoked dendritic Ca(2+) activity. We conclude that TMS directly activates fibers within the upper cortical layers that leads to the activation of dendrite-targeting inhibitory neurons which in turn suppress dendritic Ca(2+) activity. This result implies a specificity of TMS at the dendritic level that could in principle be exploited for investigating these structures non-invasively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Radial Glia (RG) are a mitotically active population of cells which reside within the ventricular zone at the lateral ventricle and give rise to the pyramidal neurons and astrocytes of the neocortex. Through cellular divisions, RG produce two daughter cells, one which resides in the ventricular zone and becomes another RG while the other is an immature progenitor which migrates away from the ventricle and populates the growing cortex. RG have been found to be a heterogeneous population of cells which express different surface antigens and genetic promoters which may influence the cellular fate of their progeny. In this study we have investigated the progenitor profiles of two promoters, nestin (a neural intermediate filament) and GLAST (astrocyte specific glutamate transporter) within the RG. In-utero electroporation was used to transfect reporter plasmids under the control of promoter driven Cre-Recombinase into the RG lining the lateral ventricle during mid-neurogensesis (E14). It was found that there was a large amount of overlap between the nestin and GLAST expressing populations of RG, however, there was still a small subset of cells which exclusively expressed GLAST. This prompted us to investigate the lineage of these two promoters using the PiggyBac transposon system which uses promoter driven episomal plasmids to incorporate a reporter gene into the genome of the transfected cells, allowing use to trace their full progeny. Our data shows that nestin expressing RG generate mostly neurons and few astrocytes while the GLAST expressing RG generate a greater proportion of astrocytes to neurons.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Developmental Dyslexia is a reading disorder that affects individuals that possess otherwise normal intelligence. Until the four candidate dyslexia susceptibility genes were discovered, the cause of cortical malformations found in post mortem dyslexic brains was unclear. Normal brain development is crucial for the proper wiring of the neural circuitry that allow an individual to perform cognitive tasks like reading. For years, familial and twin studies have suggested that there was a genetic basis to the causation of dyslexia. Kiaa0319 was among the candidate dyslexia susceptibility genes that were ascertained. KIAA0319 is located on Chromosome 6p22.2-22.3 and has been found to exhibit differential spatial-temporal expression patterns in the brain throughout development, which suggests that the polycystic kidney disease (PKD) domain encoded by KIAA0319 facilitates cell-cell adhesion to enable neuronal precursors to crawl up the radial glia during neuronal migration. With the knowledge of KIAA0319 involvement in early neurogenesis, we were interested in determining how different KIAA0319 expression may impact cortical neurons in layer II and III during early adulthood. We show that KIAA0319 knockdown in cortical pyramidal neurons significantly reduces the dendritic spine density. Studies have shown that changes in dendritic spine morphology and density affect properties of neural circuitry. Henceforth, this finding may reveal a link between the Kiaa0319 gene and the deficit of the neural processing task of reading due to reduced spines density. Finding a correlation between Kiaa0319 expression and its influence on dendritic spine development may lead to a greater insight of a direct link between the dyslexia susceptibility gene and the biological mechanism that causes dyslexia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neuronal morphology is a key feature in the study of brain circuits, as it is highly related to information processing and functional identification. Neuronal morphology affects the process of integration of inputs from other neurons and determines the neurons which receive the output of the neurons. Different parts of the neurons can operate semi-independently according to the spatial location of the synaptic connections. As a result, there is considerable interest in the analysis of the microanatomy of nervous cells since it constitutes an excellent tool for better understanding cortical function. However, the morphologies, molecular features and electrophysiological properties of neuronal cells are extremely variable. Except for some special cases, this variability makes it hard to find a set of features that unambiguously define a neuronal type. In addition, there are distinct types of neurons in particular regions of the brain. This morphological variability makes the analysis and modeling of neuronal morphology a challenge. Uncertainty is a key feature in many complex real-world problems. Probability theory provides a framework for modeling and reasoning with uncertainty. Probabilistic graphical models combine statistical theory and graph theory to provide a tool for managing domains with uncertainty. In particular, we focus on Bayesian networks, the most commonly used probabilistic graphical model. In this dissertation, we design new methods for learning Bayesian networks and apply them to the problem of modeling and analyzing morphological data from neurons. The morphology of a neuron can be quantified using a number of measurements, e.g., the length of the dendrites and the axon, the number of bifurcations, the direction of the dendrites and the axon, etc. These measurements can be modeled as discrete or continuous data. The continuous data can be linear (e.g., the length or the width of a dendrite) or directional (e.g., the direction of the axon). These data may follow complex probability distributions and may not fit any known parametric distribution. Modeling this kind of problems using hybrid Bayesian networks with discrete, linear and directional variables poses a number of challenges regarding learning from data, inference, etc. In this dissertation, we propose a method for modeling and simulating basal dendritic trees from pyramidal neurons using Bayesian networks to capture the interactions between the variables in the problem domain. A complete set of variables is measured from the dendrites, and a learning algorithm is applied to find the structure and estimate the parameters of the probability distributions included in the Bayesian networks. Then, a simulation algorithm is used to build the virtual dendrites by sampling values from the Bayesian networks, and a thorough evaluation is performed to show the model’s ability to generate realistic dendrites. In this first approach, the variables are discretized so that discrete Bayesian networks can be learned and simulated. Then, we address the problem of learning hybrid Bayesian networks with different kinds of variables. Mixtures of polynomials have been proposed as a way of representing probability densities in hybrid Bayesian networks. We present a method for learning mixtures of polynomials approximations of one-dimensional, multidimensional and conditional probability densities from data. The method is based on basis spline interpolation, where a density is approximated as a linear combination of basis splines. The proposed algorithms are evaluated using artificial datasets. We also use the proposed methods as a non-parametric density estimation technique in Bayesian network classifiers. Next, we address the problem of including directional data in Bayesian networks. These data have some special properties that rule out the use of classical statistics. Therefore, different distributions and statistics, such as the univariate von Mises and the multivariate von Mises–Fisher distributions, should be used to deal with this kind of information. In particular, we extend the naive Bayes classifier to the case where the conditional probability distributions of the predictive variables given the class follow either of these distributions. We consider the simple scenario, where only directional predictive variables are used, and the hybrid case, where discrete, Gaussian and directional distributions are mixed. The classifier decision functions and their decision surfaces are studied at length. Artificial examples are used to illustrate the behavior of the classifiers. The proposed classifiers are empirically evaluated over real datasets. We also study the problem of interneuron classification. An extensive group of experts is asked to classify a set of neurons according to their most prominent anatomical features. A web application is developed to retrieve the experts’ classifications. We compute agreement measures to analyze the consensus between the experts when classifying the neurons. Using Bayesian networks and clustering algorithms on the resulting data, we investigate the suitability of the anatomical terms and neuron types commonly used in the literature. Additionally, we apply supervised learning approaches to automatically classify interneurons using the values of their morphological measurements. Then, a methodology for building a model which captures the opinions of all the experts is presented. First, one Bayesian network is learned for each expert, and we propose an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts is induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts is built. A thorough analysis of the consensus model identifies different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types can be defined by performing inference in the Bayesian multinet. These findings are used to validate the model and to gain some insights into neuron morphology. Finally, we study a classification problem where the true class label of the training instances is not known. Instead, a set of class labels is available for each instance. This is inspired by the neuron classification problem, where a group of experts is asked to individually provide a class label for each instance. We propose a novel approach for learning Bayesian networks using count vectors which represent the number of experts who selected each class label for each instance. These Bayesian networks are evaluated using artificial datasets from supervised learning problems. Resumen La morfología neuronal es una característica clave en el estudio de los circuitos cerebrales, ya que está altamente relacionada con el procesado de información y con los roles funcionales. La morfología neuronal afecta al proceso de integración de las señales de entrada y determina las neuronas que reciben las salidas de otras neuronas. Las diferentes partes de la neurona pueden operar de forma semi-independiente de acuerdo a la localización espacial de las conexiones sinápticas. Por tanto, existe un interés considerable en el análisis de la microanatomía de las células nerviosas, ya que constituye una excelente herramienta para comprender mejor el funcionamiento de la corteza cerebral. Sin embargo, las propiedades morfológicas, moleculares y electrofisiológicas de las células neuronales son extremadamente variables. Excepto en algunos casos especiales, esta variabilidad morfológica dificulta la definición de un conjunto de características que distingan claramente un tipo neuronal. Además, existen diferentes tipos de neuronas en regiones particulares del cerebro. La variabilidad neuronal hace que el análisis y el modelado de la morfología neuronal sean un importante reto científico. La incertidumbre es una propiedad clave en muchos problemas reales. La teoría de la probabilidad proporciona un marco para modelar y razonar bajo incertidumbre. Los modelos gráficos probabilísticos combinan la teoría estadística y la teoría de grafos con el objetivo de proporcionar una herramienta con la que trabajar bajo incertidumbre. En particular, nos centraremos en las redes bayesianas, el modelo más utilizado dentro de los modelos gráficos probabilísticos. En esta tesis hemos diseñado nuevos métodos para aprender redes bayesianas, inspirados por y aplicados al problema del modelado y análisis de datos morfológicos de neuronas. La morfología de una neurona puede ser cuantificada usando una serie de medidas, por ejemplo, la longitud de las dendritas y el axón, el número de bifurcaciones, la dirección de las dendritas y el axón, etc. Estas medidas pueden ser modeladas como datos continuos o discretos. A su vez, los datos continuos pueden ser lineales (por ejemplo, la longitud o la anchura de una dendrita) o direccionales (por ejemplo, la dirección del axón). Estos datos pueden llegar a seguir distribuciones de probabilidad muy complejas y pueden no ajustarse a ninguna distribución paramétrica conocida. El modelado de este tipo de problemas con redes bayesianas híbridas incluyendo variables discretas, lineales y direccionales presenta una serie de retos en relación al aprendizaje a partir de datos, la inferencia, etc. En esta tesis se propone un método para modelar y simular árboles dendríticos basales de neuronas piramidales usando redes bayesianas para capturar las interacciones entre las variables del problema. Para ello, se mide un amplio conjunto de variables de las dendritas y se aplica un algoritmo de aprendizaje con el que se aprende la estructura y se estiman los parámetros de las distribuciones de probabilidad que constituyen las redes bayesianas. Después, se usa un algoritmo de simulación para construir dendritas virtuales mediante el muestreo de valores de las redes bayesianas. Finalmente, se lleva a cabo una profunda evaluaci ón para verificar la capacidad del modelo a la hora de generar dendritas realistas. En esta primera aproximación, las variables fueron discretizadas para poder aprender y muestrear las redes bayesianas. A continuación, se aborda el problema del aprendizaje de redes bayesianas con diferentes tipos de variables. Las mixturas de polinomios constituyen un método para representar densidades de probabilidad en redes bayesianas híbridas. Presentamos un método para aprender aproximaciones de densidades unidimensionales, multidimensionales y condicionales a partir de datos utilizando mixturas de polinomios. El método se basa en interpolación con splines, que aproxima una densidad como una combinación lineal de splines. Los algoritmos propuestos se evalúan utilizando bases de datos artificiales. Además, las mixturas de polinomios son utilizadas como un método no paramétrico de estimación de densidades para clasificadores basados en redes bayesianas. Después, se estudia el problema de incluir información direccional en redes bayesianas. Este tipo de datos presenta una serie de características especiales que impiden el uso de las técnicas estadísticas clásicas. Por ello, para manejar este tipo de información se deben usar estadísticos y distribuciones de probabilidad específicos, como la distribución univariante von Mises y la distribución multivariante von Mises–Fisher. En concreto, en esta tesis extendemos el clasificador naive Bayes al caso en el que las distribuciones de probabilidad condicionada de las variables predictoras dada la clase siguen alguna de estas distribuciones. Se estudia el caso base, en el que sólo se utilizan variables direccionales, y el caso híbrido, en el que variables discretas, lineales y direccionales aparecen mezcladas. También se estudian los clasificadores desde un punto de vista teórico, derivando sus funciones de decisión y las superficies de decisión asociadas. El comportamiento de los clasificadores se ilustra utilizando bases de datos artificiales. Además, los clasificadores son evaluados empíricamente utilizando bases de datos reales. También se estudia el problema de la clasificación de interneuronas. Desarrollamos una aplicación web que permite a un grupo de expertos clasificar un conjunto de neuronas de acuerdo a sus características morfológicas más destacadas. Se utilizan medidas de concordancia para analizar el consenso entre los expertos a la hora de clasificar las neuronas. Se investiga la idoneidad de los términos anatómicos y de los tipos neuronales utilizados frecuentemente en la literatura a través del análisis de redes bayesianas y la aplicación de algoritmos de clustering. Además, se aplican técnicas de aprendizaje supervisado con el objetivo de clasificar de forma automática las interneuronas a partir de sus valores morfológicos. A continuación, se presenta una metodología para construir un modelo que captura las opiniones de todos los expertos. Primero, se genera una red bayesiana para cada experto y se propone un algoritmo para agrupar las redes bayesianas que se corresponden con expertos con comportamientos similares. Después, se induce una red bayesiana que modela la opinión de cada grupo de expertos. Por último, se construye una multired bayesiana que modela las opiniones del conjunto completo de expertos. El análisis del modelo consensuado permite identificar diferentes comportamientos entre los expertos a la hora de clasificar las neuronas. Además, permite extraer un conjunto de características morfológicas relevantes para cada uno de los tipos neuronales mediante inferencia con la multired bayesiana. Estos descubrimientos se utilizan para validar el modelo y constituyen información relevante acerca de la morfología neuronal. Por último, se estudia un problema de clasificación en el que la etiqueta de clase de los datos de entrenamiento es incierta. En cambio, disponemos de un conjunto de etiquetas para cada instancia. Este problema está inspirado en el problema de la clasificación de neuronas, en el que un grupo de expertos proporciona una etiqueta de clase para cada instancia de manera individual. Se propone un método para aprender redes bayesianas utilizando vectores de cuentas, que representan el número de expertos que seleccionan cada etiqueta de clase para cada instancia. Estas redes bayesianas se evalúan utilizando bases de datos artificiales de problemas de aprendizaje supervisado.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chronic exposure to cocaine induces modifications to neurons in the brain regions involved in addiction. Hence, we evaluated cocaine-induced changes in the hippocampal CA1 field in Fischer 344 (F344) and Lewis (LEW) rats, 2 strains that have been widely used to study genetic predisposition to drug addiction, by combining intracellular Lucifer yellow injection with confocal microscopy reconstruction of labeled neurons. Specifically, we examined the effects of cocaine self-administration on the structure, size, and branching complexity of the apical dendrites of CA1 pyramidal neurons. In addition, we quantified spine density in the collaterals of the apical dendritic arbors of these neurons. We found differences between these strains in several morphological parameters. For example, CA1 apical dendrites were more branched and complex in LEW than in F344 rats, while the spine density in the collateral dendrites of the apical dendritic arbors was greater in F344 rats. Interestingly, cocaine self-administration in LEW rats augmented the spine density, an effect that was not observed in the F344 strain. These results reveal significant structural differences in CA1 pyramidal cells between these strains and indicate that cocaine self-administration has a distinct effect on neuron morphology in the hippocampus of rats with different genetic backgrounds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dendritic spines establish most excitatory synapses in the brain and are located in Purkinje cell’s dendrites along helical paths, perhaps maximizing the probability to contact different axons. To test whether spine helixes also occur in neocortex, we reconstructed >500 dendritic segments from adult human cortex obtained from autopsies. With Fourier analysis and spatial statistics, we analyzed spine position along apical and basal dendrites of layer 3 pyramidal neurons from frontal, temporal, and cingulate cortex. Although we occasionally detected helical positioning, for the great majority of dendrites we could not reject the null hypothesis of spatial randomness in spine locations, either in apical or basal dendrites, in neurons of different cortical areas or among spines of different volumes and lengths. We conclude that in adult human neocortex spine positions are mostly random. We discuss the relevance of these results for spine formation and plasticity and their functional impact for cortical circuits.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dendritic spines establish most excitatory synapses in the brain and are located in Purkinje cell?s dendrites along helical paths, perhaps maximizing the probability to contact different axons. To test whether spine helixes also occur in neocortex, we reconstructed ?500 dendritic segments from adult human cortex obtained from autopsies. With Fourier analysis and spatial statistics, we analyzed spine position along apical and basal dendrites of layer 3 pyramidal neurons from frontal, temporal, and cingulate cortex. Although we occasionally detected helical positioning, for the great majority of dendrites we could not reject the null hypothesis of spatial randomness in spine locations, either in apical or basal dendrites, in neurons of different cortical areas or among spines of different volumes and lengths. We conclude that in adult human neocortex spine positions are mostly random. We discuss the relevance of these results for spine formation and plasticity and their functional impact for cortical circuits.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El funcionamiento interno del cerebro es todavía hoy en día un misterio, siendo su comprensión uno de los principales desafíos a los que se enfrenta la ciencia moderna. El córtex cerebral es el área del cerebro donde tienen lugar los procesos cerebrales de más alto nivel, cómo la imaginación, el juicio o el pensamiento abstracto. Las neuronas piramidales, un tipo específico de neurona, suponen cerca del 80% de los cerca de los 10.000 millones de que componen el córtex cerebral, haciendo de ellas un objetivo principal en el estudio del funcionamiento del cerebro. La morfología neuronal, y más específicamente la morfología dendrítica, determina cómo estas procesan la información y los patrones de conexión entre neuronas, siendo los modelos computacionales herramientas imprescindibles para el estudio de su rol en el funcionamiento del cerebro. En este trabajo hemos creado un modelo computacional, con más de 50 variables relativas a la morfología dendrítica, capaz de simular el crecimiento de arborizaciones dendríticas basales completas a partir de reconstrucciones de neuronas piramidales reales, abarcando desde el número de dendritas hasta el crecimiento los los árboles dendríticos. A diferencia de los trabajos anteriores, nuestro modelo basado en redes Bayesianas contempla la arborización dendrítica en su conjunto, teniendo en cuenta las interacciones entre dendritas y detectando de forma automática las relaciones entre las variables morfológicas que caracterizan la arborización. Además, el análisis de las redes Bayesianas puede ayudar a identificar relaciones hasta ahora desconocidas entre variables morfológicas. Motivado por el estudio de la orientación de las dendritas basales, en este trabajo se introduce una regularización L1 generalizada, aplicada al aprendizaje de la distribución von Mises multivariante, una de las principales distribuciones de probabilidad direccional multivariante. También se propone una distancia circular multivariante que puede utilizarse para estimar la divergencia de Kullback-Leibler entre dos muestras de datos circulares. Comparamos los modelos con y sin regularizaci ón en el estudio de la orientación de la dendritas basales en neuronas humanas, comprobando que, en general, el modelo regularizado obtiene mejores resultados. El muestreo, ajuste y representación de la distribución von Mises multivariante se implementa en un nuevo paquete de R denominado mvCircular.---ABSTRACT---The inner workings of the brain are, as of today, a mystery. To understand the brain is one of the main challenges faced by current science. The cerebral cortex is the region of the brain where all superior brain processes, like imagination, judge and abstract reasoning take place. Pyramidal neurons, a specific type of neurons, constitute approximately the 80% of the more than 10.000 million neurons that compound the cerebral cortex. It makes the study of the pyramidal neurons crucial in order to understand how the brain works. Neuron morphology, and specifically the dendritic morphology, determines how the information is processed in the neurons, as well as the connection patterns among neurons. Computational models are one of the main tools for studying dendritic morphology and its role in the brain function. We have built a computational model that contains more than 50 morphological variables of the dendritic arborizations. This model is able to simulate the growth of complete dendritic arborizations from real neuron reconstructions, starting with the number of basal dendrites, and ending modeling the growth of dendritic trees. One of the main diferences between our approach, mainly based on the use of Bayesian networks, and other models in the state of the art is that we model the whole dendritic arborization instead of focusing on individual trees, which makes us able to take into account the interactions between dendrites and to automatically detect relationships between the morphologic variables that characterize the arborization. Moreover, the posterior analysis of the relationships in the model can help to identify new relations between morphological variables. Motivated by the study of the basal dendrites orientation, a generalized L1 regularization applied to the multivariate von Mises distribution, one of the most used distributions in multivariate directional statistics, is also introduced in this work. We also propose a circular multivariate distance that can be used to estimate the Kullback-Leibler divergence between two circular data samples. We compare the regularized and unregularized models on basal dendrites orientation of human neurons and prove that regularized model achieves better results than non regularized von Mises model. Sampling, fitting and plotting functions for the multivariate von Mises are implemented in a new R packaged called mvCircular.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta tesis se ha desarrollado en el contexto del proyecto Cajal Blue Brain, una iniciativa europea dedicada al estudio del cerebro. Uno de los objetivos de esta iniciativa es desarrollar nuevos métodos y nuevas tecnologías que simplifiquen el análisis de datos en el campo neurocientífico. El presente trabajo se ha centrado en diseñar herramientas que combinen información proveniente de distintos canales sensoriales con el fin de acelerar la interacción y análisis de imágenes neurocientíficas. En concreto se estudiará la posibilidad de combinar información visual con información háptica. Las espinas dendríticas son pequeñas protuberancias que recubren la superficie dendrítica de muchas neuronas del cerebro. A día de hoy, se cree que tienen un papel clave en la transmisión de señales neuronales. Motivo por el cual, el interés por parte de la comunidad científica por estas estructuras ha ido en aumento a medida que las técnicas de adquisición de imágenes mejoraban hasta alcanzar una calidad suficiente para analizar dichas estructuras. A menudo, los neurocientíficos utilizan técnicas de microscopía con luz para obtener los datos que les permitan analizar estructuras neuronales tales como neuronas, dendritas y espinas dendríticas. A pesar de que estas técnicas ofrezcan ciertas ventajas frente a su equivalente electrónico, las técnicas basadas en luz permiten una menor resolución. En particular, estructuras pequeñas como las espinas dendríticas pueden capturarse de forma incorrecta en las imágenes obtenidas, impidiendo su análisis. En este trabajo, se presenta una nueva técnica, que permite editar imágenes volumétricas, mediante un dispositivo háptico, con el fin de reconstruir de los cuellos de las espinas dendríticas. Con este objetivo, en un primer momento se desarrolló un algoritmo que proporciona retroalimentación háptica en datos volumétricos, completando la información que provine del canal visual. Dicho algoritmo de renderizado háptico permite a los usuarios tocar y percibir una isosuperficie en el volumen de datos. El algoritmo asegura un renderizado robusto y eficiente. Se utiliza un método basado en las técnicas de “marching tetrahedra” para la extracción local de una isosuperficie continua, lineal y definida por intervalos. La robustez deriva tanto de una etapa de detección de colisiones continua de la isosuperficie extraída, como del uso de técnicas eficientes de renderizado basadas en un proxy puntual. El método de “marching tetrahedra” propuesto garantiza que la topología de la isosuperficie extraída coincida con la topología de una isosuperficie equivalente determinada utilizando una interpolación trilineal. Además, con el objetivo de mejorar la coherencia entre la información háptica y la información visual, el algoritmo de renderizado háptico calcula un segundo proxy en la isosuperficie pintada en la pantalla. En este trabajo se demuestra experimentalmente las mejoras en, primero, la etapa de extracción de isosuperficie, segundo, la robustez a la hora de mantener el proxy en la isosuperficie deseada y finalmente la eficiencia del algoritmo. En segundo lugar, a partir del algoritmo de renderizado háptico propuesto, se desarrolló un procedimiento, en cuatro etapas, para la reconstrucción de espinas dendríticas. Este procedimiento, se puede integrar en los cauces de segmentación automática y semiautomática existentes como una etapa de pre-proceso previa. El procedimiento está diseñando para que tanto la navegación como el proceso de edición en sí mismo estén controlados utilizando un dispositivo háptico. Se han diseñado dos experimentos para evaluar esta técnica. El primero evalúa la aportación de la retroalimentación háptica y el segundo se centra en evaluar la idoneidad del uso de un háptico como dispositivo de entrada. En ambos casos, los resultados demuestran que nuestro procedimiento mejora la precisión de la reconstrucción. En este trabajo se describen también dos casos de uso de nuestro procedimiento en el ámbito de la neurociencia: el primero aplicado a neuronas situadas en la corteza cerebral humana y el segundo aplicado a espinas dendríticas situadas a lo largo de neuronas piramidales de la corteza del cerebro de una rata. Por último, presentamos el programa, Neuro Haptic Editor, desarrollado a lo largo de esta tesis junto con los diferentes algoritmos ya mencionados. ABSTRACT This thesis took place within the Cajal Blue Brain project, a European initiative dedicated to the study of the brain. One of the main goals of this project is the development of new methods and technologies simplifying data analysis in neuroscience. This thesis focused on the development of tools combining information originating from distinct sensory channels with the aim of accelerating both the interaction with neuroscience images and their analysis. In concrete terms, the objective is to study the possibility of combining visual information with haptic information. Dendritic spines are thin protrusions that cover the dendritic surface of numerous neurons in the brain and whose function seems to play a key role in neural circuits. The interest of the neuroscience community toward those structures kept increasing as and when acquisition methods improved, eventually to the point that the produced datasets enabled their analysis. Quite often, neuroscientists use light microscopy techniques to produce the dataset that will allow them to analyse neuronal structures such as neurons, dendrites and dendritic spines. While offering some advantages compared to their electronic counterpart, light microscopy techniques achieve lower resolutions. Particularly, small structures such as dendritic spines might suffer from a very low level of fluorescence in the final dataset, preventing further analysis. This thesis introduces a new technique enabling the edition of volumetric datasets in order to recreate dendritic spine necks using a haptic device. In order to fulfil this objective, we first presented an algorithm to provide haptic feedback directly from volumetric datasets, as an aid to regular visualization. The haptic rendering algorithm lets users perceive isosurfaces in volumetric datasets, and it relies on several design features that ensure a robust and efficient rendering. A marching tetrahedra approach enables the dynamic extraction of a piecewise linear continuous isosurface. Robustness is derived using a Continuous Collision Detection step coupled with acknowledged proxy-based rendering methods over the extracted isosurface. The introduced marching tetrahedra approach guarantees that the extracted isosurface will match the topology of an equivalent isosurface computed using trilinear interpolation. The proposed haptic rendering algorithm improves the coherence between haptic and visual cues computing a second proxy on the isosurface displayed on screen. Three experiments demonstrate the improvements on the isosurface extraction stage as well as the robustness and the efficiency of the complete algorithm. We then introduce our four-steps procedure for the complete reconstruction of dendritic spines. Based on our haptic rendering algorithm, this procedure is intended to work as an image processing stage before the automatic segmentation step giving the final representation of the dendritic spines. The procedure is designed to allow both the navigation and the volume image editing to be carried out using a haptic device. We evaluated our procedure through two experiments. The first experiment concerns the benefits of the force feedback and the second checks the suitability of the use of a haptic device as input. In both cases, the results shows that the procedure improves the editing accuracy. We also report two concrete cases where our procedure was employed in the neuroscience field, the first one concerning dendritic spines in the human cortex, the second one referring to an ongoing experiment studying dendritic spines along dendrites of mouse cortical pyramidal neurons. Finally, we present the software program, Neuro Haptic Editor, that was built along the development of the different algorithms implemented during this thesis, and used by neuroscientists to use our procedure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Currently, there is a limited understanding of the factors that influence the localization and density of individual synapses in the central nervous system. Here we have studied the effects of activity on synapse formation between hippocampal dentate granule cells and CA3 pyramidal neurons in culture, taking advantage of FM1–43 as a fluorescent marker of synaptic boutons. We observed an early tendency for synapses to group together, quickly followed by the appearance of synaptic clusters on dendritic processes. These events were strongly influenced by N-methyl-d-aspartic acid receptor- and cyclic AMP-dependent signaling. The microstructure and localization of the synaptic clusters resembled that found in hippocampus, at mossy fiber synapses of stratum lucidum. Activity-dependent clustering of synapses represents a means for synaptic targeting that might contribute to synaptic organization in the brain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Calretinin (Cr) is a Ca2+ binding protein present in various populations of neurons distributed in the central and peripheral nervous systems. We have generated Cr-deficient (Cr−/−) mice by gene targeting and have investigated the associated phenotype. Cr−/− mice were viable, and a large number of morphological, biochemical, and behavioral parameters were found unaffected. In the normal mouse hippocampus, Cr is expressed in a widely distributed subset of GABAergic interneurons and in hilar mossy cells of the dentate gyrus. Because both types of cells are part of local pathways innervating dentate granule cells and/or pyramidal neurons, we have explored in Cr−/− mice the synaptic transmission between the perforant pathway and granule cells and at the Schaffer commissural input to CA1 pyramidal neurons. Cr−/− mice showed no alteration in basal synaptic transmission, but long-term potentiation (LTP) was impaired in the dentate gyrus. Normal LTP could be restored in the presence of the GABAA receptor antagonist bicuculline, suggesting that in Cr−/− dentate gyrus an excess of γ-aminobutyric acid (GABA) release interferes with LTP induction. Synaptic transmission and LTP were normal in CA1 area, which contains only few Cr-positive GABAergic interneurons. Cr−/− mice performed normally in spatial memory task. These results suggest that expression of Cr contributes to the control of synaptic plasticity in mouse dentate gyrus by indirectly regulating the activity of GABAergic interneurons, and that Cr−/− mice represent a useful tool to understand the role of dentate LTP in learning and memory.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The function of dendritic spines, postsynaptic sites of excitatory input in the mammalian central nervous system (CNS), is still not well understood. Although changes in spine morphology may mediate synaptic plasticity, the extent of basal spine motility and its regulation and function remains controversial. We investigated spine motility in three principal neurons of the mouse CNS: cerebellar Purkinje cells, and cortical and hippocampal pyramidal neurons. Motility was assayed with time-lapse imaging by using two-photon microscopy of green fluorescent protein-labeled neurons in acute and cultured slices. In all three cell types, dendritic protrusions (filopodia and spines) were highly dynamic, exhibiting a diversity of morphological rearrangements over short (<1-min) time courses. The incidence of spine motility declined during postnatal maturation, but dynamic changes were still apparent in many spines in late-postnatal neurons. Although blockade or induction of neuronal activity did not affect spine motility, disruption of actin polymerization did. We hypothesize that this basal motility of dendritic protrusions is intrinsic to the neuron and underlies the heightened plasticity found in developing CNS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Long-term potentiation (LTP) in the hippocampal slice preparation has been proposed as an in vitro model for long-term memory. However, correlation of LTP with memory in living animals has been difficult to demonstrate. Furthermore, in the last few years evidence has accumulated that dissociate the two. Because potassium channels might determine the weight of synapses in networks, we studied the role of Kv1.4, a presynaptic A-type voltage-dependent K+ channel, in both memory and LTP. Reverse transcription–PCR and Western blot analysis with specific antibodies showed that antisense oligodeoxyribonucleotide to Kv1.4 microinjected intraventricularly into rat brains obstructed hippocampal Kv1.4 mRNA, “knocking down” the protein in the hippocampus. This antisense knockdown had no effect on rat spatial maze learning, memory, or exploratory behavior, but eliminated both early- and late-phase LTP and reduced paired-pulse facilitation (a presynaptic effect) in CA1 pyramidal neurons without affecting dentate gyrus LTP. This presynaptic Kv1.4 knockdown together with previous postsynaptic Kv1.1 knockdown demonstrates that CA1 LTP is neither necessary nor sufficient for rat spatial memory.