142 resultados para PVDF


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of polymeric blends to be used as matrices for bone regeneration is a hot topic nowadays. In this article we report on the blends composed by corn starch and poly(vinylidene fluoride), PVDF, or poly(vinylidene fluoride-trifluoroethylene), P(VDF-TrFE), to obtain biocompatible materials. Blends were produced by compressing/annealing and chemically/structurally characterized by micro-Raman scattering and Fourier transform infrared (FTIR) absorption spectroscopies, dynamic mechanical analysis (DMA) and scanning electron microscopy (SEM), besides in vivo study to evaluate the tissue response. Vibrational spectroscopy reveals no chemical interaction between the polymers and starch, absence of material degradation due to compressing/annealing process or organism implantation, and maintenance of a and ferroelectric crystalline phases of PVDF and P(VDF-TrFE), respectively. As a consequence of absence of interaction between polymers and starch, it was possible to identify by SEM each material, with starch acting as filler. Elastic modulus (E') obtained from DMA measurement, independent of the material proportion used in blends, reaches values close to those of cancellous bone. Finally, the in vivo study in animals shows that the blends, regardless of the composition, were tolerated by cancellous bone. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monitoring non-ionizing radiant energy is increasingly demanded for many applications such as automobile, biomedical and security system. Thermal type infrared (IR) sensors can operate at room temperature and pyroelectric materials have high sensitivity and accuracy for that application. Working as thermal transducer pyroelectric sensor converts the non-quantified thermal flux into the output measurable quantity of electrical charge, voltage or current. In the present study the composite made of poly(vinylidene fluoride) -PVDF and lead zirconate titanate (PZT) partially recovered with polyaniline (PAni) conductor polymer has been used as sensor element. The pyroelectric coefficient p(T) was obtained by measuring the pyroelectric reversible current, i.e., measuring the thermally stimulated depolarization current (TSDC) after removing all irreversible contribution to the current such as injected charge during polarization of the sample. To analyze the sensing property of the pyroelectric material, the sensor is irradiated by a high power light source (halogen lamp of 250 W) that is chopped providing a modulated radiation. A device assembled in the laboratory is used to change the light intensity sensor, an aluminum strip having openings with diameters ranging from 1 to 10 mm incremented by one millimeter. The sensor element is assembled between two electrodes while its frontal surface is painted black ink to maximize the light absorption. The signal from the sensor is measured by a Lock-In amplifier model SR530 -Stanford Research Systems. The behavior of the output voltage for an input power at several frequencies for PZT-PAni/PVDF (30/ 70 vol%) composite follows the inverse power law (1/ f) and the linearity can be observed in the frequency range used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Ciência dos Materiais - FEIS

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEIS

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We compare the photoemission and electron energy loss spectra of crystalline poly(vinylidene-fluoride with trifluoroethylene: 70%: 30%), P(VDF–TrFE), films, fabricated by the Langmuir–Blodgett technique and annealed in vacuum, with in situ thermally evaporated films of poly(vinylidene-fluoride) (PVDF) in vacuum. The electronic structure and vibrational modes of the short chain PVDF films compare well with the crystalline P(VDF–TrFE) films indicating that vacuum annealed films prepared ex situ are free of significant surface contamination once vacuum annealed. The electronic structure for the short chain PVDF films exhibits, however, different temperature dependence than the crystalline P(VDF–TrFE) films. PACS: 68.47.Mn; 71.20.Rv; 63.22.+m; 73.22.-f

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new 2-D hydrophone array for ultrasound therapy monitoring is presented, along with a novel algorithm for passive acoustic mapping using a sparse weighted aperture. The array is constructed using existing polyvinylidene fluoride (PVDF) ultrasound sensor technology, and is utilized for its broadband characteristics and its high receive sensitivity. For most 2-D arrays, high-resolution imagery is desired, which requires a large aperture at the cost of a large number of elements. The proposed array's geometry is sparse, with elements only on the boundary of the rectangular aperture. The missing information from the interior is filled in using linear imaging techniques. After receiving acoustic emissions during ultrasound therapy, this algorithm applies an apodization to the sparse aperture to limit side lobes and then reconstructs acoustic activity with high spatiotemporal resolution. Experiments show verification of the theoretical point spread function, and cavitation maps in agar phantoms correspond closely to predicted areas, showing the validity of the array and methodology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Positive composite electrodes having LiNi0.5Mn1.5O4 spinel as active material, a blend of graphite and carbon black for increasing the electrode electrical conductivity and either polyvinyldenefluoride (PVDF) or a blend of PVDF with a small amount of Teflon® (1 wt%) for building up the electrode. They have been processed by tape casting on an aluminum foil as current collector using the doctor blade technique. Additionally, the component blends were either sonicated or not, and the processed electrodes were compacted or not under subsequent cold pressing. Composites electrodes with high weight, up to 17 mg/cm2, were prepared and studied as positive electrodes for lithium-ion batteries. The addition of Teflon® and the application of the sonication treatment lead to uniform electrodes that are well-adhered to the aluminum foil. Both parameters contribute to improve the capacity drained at high rates (5C). Additional compaction of the electrode/aluminum assemblies remarkably enhances the electrode rate capabilities. At 5C rate, remarkable capacity retentions between 80% and 90% are found for electrodes with weights in the range 3–17 mg/cm2, having Teflon® in their formulation, prepared after sonication of their component blends and compacted under 2 tonnes/cm2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The initial aim of this project was to develop a non-contact fibre optic based displacement sensor to operate in the harsh environment of a 'Light Gas Gun' (LGG), which can 'fire' small particles at velocities ranging from 1-8.4 km/s. The LGG is used extensively for research in aerospace to analyze the effects of high speed impacts on materials. Ideally the measurement should be made close to the centre of the impact to minimise corruption of the data from edge effects and survive the impact. A further requirement is that it should operate at a stand-off distance of ~ 8cm. For these reasons we chose to develop a pseudo con-focal intensity sensor, which demonstrated resolution comparable with conventional PVDF sensors combined with high survivability and low cost. A second sensor was developed based on 'Fibre Bragg Gratings' (FBG) which although requiring contact with the target the low weight and very small contact area had minimal effect on the dynamics of the target. The FBG was mounted either on the surface of the target or tangentially between a fixed location. The output signals from the FBG were interrogated in time by a new method. Measurements were made on composite and aluminium plates in the LGG and on low speed drop tests. The particle momentum for the drop tests was chosen to be similar to that of the particles used in the LGG.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The initial aim of this project was to develop a non-contact fibre optic based displacement sensor to operate in the harsh environment of a 'Light Gas Gun' (LGG), which can 'fire' small particles at velocities ranging from 1-8.4 km/s. The LGG is used extensively for research in aerospace to analyze the effects of high speed impacts on materials. Ideally the measurement should be made close to the centre of the impact to minimise corruption of the data from edge effects and survive the impact. A further requirement is that it should operate at a stand-off distance of ~ 8cm. For these reasons we chose to develop a pseudo con-focal intensity sensor, which demonstrated resolution comparable with conventional PVDF sensors combined with high survivability and low cost. A second sensor was developed based on 'Fibre Bragg Gratings' (FBG) which although requiring contact with the target the low weight and very small contact area had minimal effect on the dynamics of the target. The FBG was mounted either on the surface of the target or tangentially between a fixed location. The output signals from the FBG were interrogated in time by a new method. Measurements were made on composite and aluminium plates in the LGG and on low speed drop tests. The particle momentum for the drop tests was chosen to be similar to that of the particles used in the LGG.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cardiac troponin I (cTnI) is one of the most useful serum marker test for the determination of myocardial infarction (MI). The first commercial assay of cTnI was released for medical use in the United States and Europe in 1995. It is useful in determining if the source of chest pains, whose etiology may be unknown, is cardiac related. Cardiac TnI is released into the bloodstream following myocardial necrosis (cardiac cell death) as a result of an infarct (heart attack). In this research project the utility of cardiac troponin I as a potential marker for the determination of time of death is investigated. The approach of this research is not to investigate cTnI degradation in serum/plasma, but to investigate the proteolytic breakdown of this protein in heart tissue postmortem. If our hypothesis is correct, cTnI might show a distinctive temporal degradation profile after death. This temporal profile may have potential as a time of death marker in forensic medicine. The field of time of death markers has lagged behind the great advances in technology since the late 1850's. Today medical examiners are using rudimentary time of death markers that offer limited reliability in the medico-legal arena. Cardiac TnI must be stabilized in order to avoid further degradation by proteases in the extraction process. Chemically derivatized magnetic microparticles were covalently linked to anti-cTnI monoclonal antibodies. A charge capture approach was also used to eliminate the antibody from the magnetic microparticles given the negative charge on the microparticles. The magnetic microparticles were used to extract cTnI from heart tissue homogenate for further bio-analysis. Cardiac TnI was eluted from the beads with a buffer and analyzed. This technique exploits banding pattern on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) followed by a western blot transfer to polyvinylidene fluoride (PVDF) paper for probing with anti-cTnI monoclonal antibodies. Bovine hearts were used as a model to establish the relationship of time of death and concentration/band-pattern given its homology to human cardiac TnI. The final concept feasibility was tested with human heart samples from cadavers with known time of death. ^