960 resultados para PROTON-PROTON
Resumo:
In this thesis we build a novel analysis framework to perform the direct extraction of all possible effective Higgs boson couplings to the neutral electroweak gauge bosons in the H → ZZ(*) → 4l channel also referred to as the golden channel. We use analytic expressions of the full decay differential cross sections for the H → VV' → 4l process, and the dominant irreducible standard model qq ̄ → 4l background where 4l = 2e2μ,4e,4μ. Detector effects are included through an explicit convolution of these analytic expressions with transfer functions that model the detector responses as well as acceptance and efficiency effects. Using the full set of decay observables, we construct an unbinned 8-dimensional detector level likelihood function which is con- tinuous in the effective couplings, and includes systematics. All potential anomalous couplings of HVV' where V = Z,γ are considered, allowing for general CP even/odd admixtures and any possible phases. We measure the CP-odd mixing between the tree-level HZZ coupling and higher order CP-odd couplings to be compatible with zero, and in the range [−0.40, 0.43], and the mixing between HZZ tree-level coupling and higher order CP -even coupling to be in the ranges [−0.66, −0.57] ∪ [−0.15, 1.00]; namely compatible with a standard model Higgs. We discuss the expected precision in determining the various HVV' couplings in future LHC runs. A powerful and at first glance surprising prediction of the analysis is that with 100-400 fb-1, the golden channel will be able to start probing the couplings of the Higgs boson to diphotons in the 4l channel. We discuss the implications and further optimization of the methods for the next LHC runs.
Resumo:
Proton-coupled electron transfer (PCET) reactions are ubiquitous throughout chemistry and biology. However, challenges arise in both the the experimental and theoretical investigation of PCET reactions; the rare-event nature of the reactions and the coupling between quantum mechanical electron- and proton-transfer with the slower classical dynamics of the surrounding environment necessitates the development of robust simulation methodology. In the following dissertation, novel path-integral based methods are developed and employed for the direct simulation of the reaction dynamics and mechanisms of condensed-phase PCET.
Resumo:
We carried out quantum mechanics (QM) studies aimed at improving the performance of hydrogen fuel cells. This led to predictions of improved materials, some of which were subsequently validated with experiments by our collaborators.
In part I, the challenge was to find a replacement for the Pt cathode that would lead to improved performance for the Oxygen Reduction Reaction (ORR) while remaining stable under operational conditions and decreasing cost. Our design strategy was to find an alloy with composition Pt3M that would lead to surface segregation such that the top layer would be pure Pt, with the second and subsequent layers richer in M. Under operating conditions we expect the surface to have significant O and/or OH chemisorbed on the surface, and hence we searched for M that would remain segregated under these conditions. Using QM we examined surface segregation for 28 Pt3M alloys, where M is a transition metal. We found that only Pt3Os and Pt3Ir showed significant surface segregation when O and OH are chemisorbed on the catalyst surfaces. This result indicates that Pt3Os and Pt3Ir favor formation of a Pt-skin surface layer structure that would resist the acidic electrolyte corrosion during fuel cell operation environments. We chose to focus on Os because the phase diagram for Pt-Ir indicated that Pt-Ir could not form a homogeneous alloy at lower temperature. To determine the performance for ORR, we used QM to examine all intermediates, reaction pathways, and reaction barriers involved in the processes for which protons from the anode reactions react with O2 to form H2O. These QM calculations used our Poisson-Boltzmann implicit solvation model include the effects of the solvent (water with dielectric constant 78 with pH 7 at 298K). We found that the rate determination step (RDS) was the Oad hydration reaction (Oad + H2Oad -> OHad + OHad) in both cases, but that the barrier for pure Pt of 0.50 eV is reduced to 0.48 eV for Pt3Os, which at 80 degrees C would increase the rate by 218%. We collaborated with the Pu-Wei Wu’s group to carry out experiments, where we found that the dealloying process-treated Pt2Os catalyst showed two-fold higher activity at 25 degrees C than pure Pt and that the alloy had 272% improved stability, validating our theoretical predictions.
We also carried out similar QM studies followed by experimental validation for the Os/Pt core-shell catalyst fabricated by the underpotential deposition (UPD) method. The QM results indicated that the RDS for ORR is a compromise between the OOH formation step (0.37 eV for Pt, 0.23 eV for Pt2ML/Os core-shell) and H2O formation steps (0.32 eV for Pt, 0.22 eV for Pt2ML/Os core-shell). We found that Pt2ML/Os has the highest activity (compared to pure Pt and to the Pt3Os alloy) because the 0.37 eV barrier decreases to 0.23 eV. To understand what aspects of the core shell structure lead to this improved performance, we considered the effect on ORR of compressing the alloy slab to the dimensions of pure Pt. However this had little effect, with the same RDS barrier 0.37 eV. This shows that the ligand effect (the electronic structure modification resulting from the Os substrate) plays a more important role than the strain effect, and is responsible for the improved activity of the core- shell catalyst. Experimental materials characterization proves the core-shell feature of our catalyst. The electrochemical experiment for Pt2ML/Os/C showed 3.5 to 5 times better ORR activity at 0.9V (vs. NHE) in 0.1M HClO4 solution at 25 degrees C as compared to those of commercially available Pt/C. The excellent correlation between experimental half potential and the OH binding energies and RDS barriers validate the feasibility of predicting catalyst activity using QM calculation and a simple Langmuir–Hinshelwood model.
In part II, we used QM calculations to study methane stream reforming on a Ni-alloy catalyst surfaces for solid oxide fuel cell (SOFC) application. SOFC has wide fuel adaptability but the coking and sulfur poisoning will reduce its stability. Experimental results suggested that the Ni4Fe alloy improves both its activity and stability compared to pure Ni. To understand the atomistic origin of this, we carried out QM calculations on surface segregation and found that the most stable configuration for Ni4Fe has a Fe atom distribution of (0%, 50%, 25%, 25%, 0%) starting at the bottom layer. We calculated that the binding of C atoms on the Ni4Fe surface is 142.9 Kcal/mol, which is about 10 Kcal/mol weaker compared to the pure Ni surface. This weaker C binding energy is expected to make coke formation less favorable, explaining why Ni4Fe has better coking resistance. This result confirms the experimental observation. The reaction energy barriers for CHx decomposition and C binding on various alloy surface, Ni4X (X=Fe, Co, Mn, and Mo), showed Ni4Fe, Ni4Co, and Fe4Mn all have better coking resistance than pure Ni, but that only Ni4Fe and Fe4Mn have (slightly) improved activity compared to pure Ni.
In part III, we used QM to examine the proton transport in doped perovskite-ceramics. Here we used a 2x2x2 supercell of perovskite with composition Ba8X7M1(OH)1O23 where X=Ce or Zr and M=Y, Gd, or Dy. Thus in each case a 4+ X is replace by a 3+ M plus a proton on one O. Here we predicted the barriers for proton diffusion allowing both includes intra-octahedron and inter-octahedra proton transfer. Without any restriction, we only observed the inter-octahedra proton transfer with similar energy barrier as previous computational work but 0.2 eV higher than experimental result for Y doped zirconate. For one restriction in our calculations is that the Odonor-Oacceptor atoms were kept at fixed distances, we found that the barrier difference between cerates/zirconates with various dopants are only 0.02~0.03 eV. To fully address performance one would need to examine proton transfer at grain boundaries, which will require larger scale ReaxFF reactive dynamics for systems with millions of atoms. The QM calculations used here will be used to train the ReaxFF force field.
Resumo:
We measured the recoil proton polarization in the process γp → pη at the 1.5 GeV Caltech electron synchrotron, at photon energies from 0.8 to 1.1 GeV, and at center-of-mass production angles around 90°. A counter-spark chamber array was used to determine the kinematics of all particles in the final state of the partial mode γp → pη (η → 2γ). The protons' polarization was determined by measuring an asymmetry in scattering off carbon. Analysis of 280,000 pictures yielded 2400 useful scatters with a background which was 30% of the foreground. The polarization results show a sizeable opposite parity interference at 830 MeV, 950 MeV, and 1100 MeV.
Resumo:
The Q values and 0o cross sections of (He3, n) reactions forming seven proton-rich nuclei have been measured with accuracies varying from 6 to 18 keV. The Q values (in keV) are: Si26 (85), S30 (-573), Ar34 (-759), Ti42 (-2865), Cr48 (5550), Ni56 (4513) and Zn60 (818). At least one excited state was found for all but Ti42. The first four nuclei complete isotopic spin triplets; the results obtained agree well with charge-symmetry predictions. The last three, all multiples of the α particle, are important in the α and e-process theories of nucleo-synthesis in stars. The energy available for β decay of these three was found by magnetic spectrometer measurements of the (He3, p) Q values of reactions leading to V48, Co56, and Cu60. Many excited states were seen: V48 (3), Co56 (15), Cu60 (23). The first two states of S30 are probably 0+ and 2+ from (He3, n) angular distribution measurements. Two NaI γ-ray measurements are described: the decay of Ar34 (measured Ƭ1/2 = 1.2 ± 0.3s) and the prompt γ-ray spectrum from Fe54(He3, nγ)Ni56. Possible collective structure in Ni56 and Ca40, both doubly magic, is discussed.
The (He3, n) neutron energy and yield measurements utilized neutron-induced nuclear reactions in a silicon semiconductor detector. Cross sections for the most important detection processes, Si28 (n, α) Mg25 and Si28 (n, p) Al28, are presented for reactions leading to the first four states of both residual nuclei for neutron energies from 7.3 to 16.4 MeV. Resolution and pulse-height anomalies associated with recoil Mg25 and Al28 ions are discussed. The 0o cross section for Be9 (α, n) C12, used to provide calibration neutrons, has been measured with a stilbene spectrometer for no (5.0 ≤ Eα ≤ 12 MeV), n1 (4.3 ≤ Eα ≤ 12.0 MeV) and n2 (6.0 ≤ Eα ≤ 10.1 MeV). Resonances seen in the no yield may correspond to nine new levels in C13.
Resumo:
The activation of Fe-coordinated N2 via the formal addition of hydrogen atom equivalents is explored in this thesis. These reactions may occur in nitrogenase enzymes during the biological conversion of N2 to NH3. To understand these reactions, the N2 reactivity of a series of molecular Fe(N2) platforms is investigated. A trigonal pyramidal, carbon-ligated FeI complex was prepared that displays a similar geometry to that of the resting state 'belt' Fe atoms of nitrogenase. Upon reduction, this species was shown to coordinate N2, concomitant with significant weakening of the C-Fe interaction. This hemilability of the axial ligand may play a critical role in mediating the interconversion of Fe(NxHy) species during N2 conversion to NH3. In fact, a trigonal pyramidal borane-ligated Fe complex was shown to catalyze this transformation, generating up to 8.49 equivalents of NH3. To shed light on the mechanistic details of this reaction, protonation of a borane-ligated Fe(N2) complex was investigated and found to give rise to a mixture of species that contains an iron hydrazido(2-) [Fe(NNH2)] complex. The identification of this species is suggestive of an early N-N bond cleavage event en route to NH3 production, but the highly-reactive nature of this complex frustrated direct attempts to probe this possibility. A structurally-analogous silyl-ligated Fe(N2) complex was found to react productively with hydrogen atom equivalents, giving rise to an isolable Fe(NNH2) species. Spectroscopic and crystallographic studies benefited from the enhanced stability of this complex relative to the borane analogue. One-electron reduction of this species initiates a spontaneous disproportionation reaction with an iron hydrazine [Fe(NH2NH2)] complex as the predominant reaction product. This transformation provides support for an Fe-mediated N2 activation mechanism that proceeds via a late N-N bond cleavage. In hopes of gaining more fundamental insight into these reactions, a series of Fe(CN) complexes were prepared and reacted with hydrogen-atom equivalents. Significant quantities of CH4 and NH3 are generated in these reactions as a result of complete C-N bond activation. A series of Fe(CNHx) were found to be exceptionally stable and may be intermediates in these reactions. The stability of these compounds permitted collection of thermodynamic parameters pertinent to the unique N-H bonds. This data is comparatively discussed with the theoretically-predicted data of the N2-derived Fe(NNHx) species. Exceptionally-weak N-H bond enthalpies are found for many of these compounds, and sheds light on their short-lived nature and tendency to evolve H2. As a whole, these works both establish and provide a means to understand Fe-mediated N2 activation via the addition of hydrogen atom equivalents.
Resumo:
The cross sections for the two antiproton-proton annihilation-in-flight modes,
ˉp + p → π+ + π-
ˉp + p → k+ + k-
were measured for fifteen laboratory antiproton beam momenta ranging from 0.72 to 2.62 GeV/c. No magnets were used to determine the charges in the final state. As a result, the angular distributions were obtained in the form [dσ/dΩ (ΘC.M.) + dσ/dΩ (π – ΘC.M.)] for 45 ≲ ΘC.M. ≲ 135°.
A hodoscope-counter system was used to discriminate against events with final states having more than two particles and antiproton-proton elastic scattering events. One spark chamber was used to record the track of each of the two charged final particles. A total of about 40,000 pictures were taken. The events were analyzed by measuring the laboratory angle of the track in each chamber. The value of the square of the mass of the final particles was calculated for each event assuming the reaction
ˉp + p → a pair of particles with equal masses.
About 20,000 events were found to be either annihilation into π ±-pair or k ±-pair events. The two different charged meson pair modes were also distinctly separated.
The average differential cross section of ˉp + p → π+ + π- varied from ~ 25 µb/sr at antiproton beam momentum 0.72 GeV/c (total energy in center-of-mass system, √s = 2.0 GeV) to ~ 2 µb/sr at beam momentum 2.62 GeV/c (√s = 2.64 GeV). The most striking feature in the angular distribution was a peak at ΘC.M. = 90° (cos ΘC.M. = 0) which increased with √s and reached a maximum at √s ~ 2.1 GeV (beam momentum ~ 1.1 GeV/c). Then it diminished and seemed to disappear completely at √s ~ 2.5 GeV (beam momentum ~ 2.13 GeV/c). A valley in the angular distribution occurred at cos ΘC.M. ≈ 0.4. The differential cross section then increased as cos ΘC.M. approached 1.
The average differential cross section for ˉp + p → k+ + k- was about one third of that of the π±-pair mode throughout the energy range of this experiment. At the lower energies, the angular distribution, unlike that of the π±-pair mode, was quite isotropic. However, a peak at ΘC.M. = 90° seemed to develop at √s ~ 2.37 GeV (antiproton beam momentum ~ 1.82 GeV/c). No observable change was seen at that energy in the π±-pair cross section.
The possible connection of these features with the observed meson resonances at 2.2 GeV and 2.38 GeV, and its implications, were discussed.
Resumo:
Recent theoretical developments in the reggeization of inelastic processes involving particles with high spin are incorporated into a model of vector meson production. A number of features of experimental differential cross sections and density matrices are interpreted in terms of this model.
The method chosen for reggeization of helicity amplitudes first separates kinematic zeros and singularities from the parity-conserving amplitudes and then applies results of Freedman and Wang on daughter trajectories to the remaining factors. Kinematic constraints on helicity amplitudes at t = 0 and t = (M – MΔ)2 are also considered.
It is found that data for reactions of types πN→VN and πN→VΔ are consistent with a model of this type in which all kinematic constraints at t = 0 are satisfied by evasion (vanishing of residue functions). As a quantitative test of the parametrization, experimental differential cross sections of vector meson production reactions dominated by pion trajectory exchange are compared with the theory. It is found that reduced residue functions are approximately constant, once the kinematic behavior near t = (M – MΔ)2 has been removed.
The alternative possibility of conspiracy between amplitudes is also discussed; and it is shown that unless conspiracy is present, some amplitudes allowed by angular momentum conservation will not contribute with full strength in the forward direction. An example, γp→π+n in which the data for dσ/dt indicate conspiracy, is studied in detail.
Resumo:
The nature of the intra- and intermolecular base-stacking interactions involving several dinucleoside monophosphates in aqueous solution have been investigated by proton magnetic resonance spectrosocopy, and this method has been applied to a study of the interaction of polyuridylic acid with purine and adenosine monomers.
The pmr spectra of adenylyl (3' → 5') cytidine (ApC) and cytidylyl (3' → 5') adenosine (CpA) have been studied as a function of concentration and temperature. The results of these studies indicate that the intramolecular base-stacking interactions between the adenine and cytosine bases of these dinucleoside monophosphates are rather strong, and that the stacking tendencies are comparable for the two sequence isomers. The chemical shifts of the cytosine H5 and adenine H2 protons, and their variations with temperature, were shown to be consistent with stacked conformations in which both bases of the dinucleoside monophosphates are preferentially oriented in the anti conformation as in similar dApdC, and dCpdA (dA = deoxyadenosine; dC = deoxycytidine) segments in double helical DNA. The intramolecular stacking interaction was found to have a pronounced effect on the conformations of the ribose moieties, and these conformational changes are discussed. The concentration studies indicate extensive self-association of these dinucleoside monophosphates, and analysis of the concentration data facilitated determination of the dimerization constant for the association process as well as the nature of the intermolecular complexes.
The dependence of the ribose conformation upon the extent of intramolecular base-stacking was used to demonstrate that the base-base interaction in cytidylyl (3' → 5') cytidine (CpC) is rather strong, while there appears to be little interaction between the two uracil bases of uridylyl (3' → 5') uridine (UpU).
Studies of the binding of purine to several ribose and deoxyribose dinucleoside monophosphates show that the mode of interaction is base-stacking, and evidence for the formation of a purine-dinucleoside monophosphate intercalated complex is presented. The purine proton resonances are markedly broadened in this complex, and estimates of the purine linewidths in the complex and the equilibrium constant for purine intercalation are obtained.
A study of the interaction of unsubstitued purine with polyuridylic acid at 29°C by pmr indicated that purine binds to the uracil bases of the polymer by base-stacking. The severe broadening of the purine proton resonances observed provides strong evidence for the intercalation of purine between adjacent uracil bases of poly U. This interaction does not result in a more rigid or ordered structure for the polymer.
Investigation of the interaction between adenosine and polyuridylic acid revealed two modes of interaction between the monomer and the polymer, depending on the temperature. At temperatures above 26°C or so, monomeric adenosine binds to poly U by noncooperative A-U base stacking. Below this temperature, a rigid triple-stranded 1A:2U complex is formed, presumably via cooperative hydrogen-bonding as has previously been reported.
These results clearly illustrate the importance of base-stacking in non-specific interactions between bases, nucleosides and nucleotides, and also reveal the important role of the base-stacking interactions in cooperatively for med structures involving specific base-pairing where both types of interaction are possible.