903 resultados para PROTON CONDUCTIVITY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structures of the proton-transfer compounds of 3,5-dinitrosalicylic acid (DNSA) with a series of aniline-type Lewis bases [aniline, 2-hydroxyaniline, 2-methoxyaniline, 3-methoxyaniline, 4-fluoroaniline, 4-chloroaniline and 2-aminoaniline] have been determined and their hydrogen-bonding systems analysed. All are anhydrous 1:1 salts: [(C6H8N)+(C7H3N2O7)-], (1), [(C6H8NO)+(C7H3N2O7)-], (2), [(C7H10NO)+(C7H3N2O7)-], (3), [(C7H10NO)+(C7H3N2O7)-], (4), [(C6H7FN)+(C7H3N2O7)-], (5), [(C6H7ClN)+(C7H3N2O7)-], (6), and [(C6H9N2)+(C7H3N2O7)-], (7) respectively. Crystals of 1 and 6 are triclinic, space group P-1 while the remainder are monoclinic with space group either P21/n (2, 4, 5 and 7) or P21 (3). Unit cell dimensions and contents are: for 1, a = 7.2027(17), b = 7.5699(17), c = 12.9615(16) Å, α = 84.464(14), β = 86.387(15), γ = 75.580(14)o, Z = 2; for 2, a = 7.407(3), b = 6.987(3), c = 27.653(11) Å, β = 94.906(7)o, Z = 4; for 3, a = 8.2816(18), b = 23.151(6), c = 3.9338(10), β = 95.255(19)o, Z = 2; for 4, a = 11.209(2), b = 8.7858(19), c = 15.171(3) Å, β = 93.717(4)o, Z = 4; for 5, a = 26.377(3), b = 10.1602(12), c = 5.1384(10) Å, β = 91.996(13)o, Z = 4; for 6, a = 11.217(3), b = 14.156(5), c = 4.860(3) Å, α = 99.10(4), β = 96.99(4), γ = 76.35(2)o, Z = 2; for 7, a = 12.830(4), b = 8.145(3), c = 14.302(4) Å, β = 102.631(6)o, Z = 4. In all compounds at least one primary linear intermolecular N+-H…O(carboxyl) hydrogen-bonding interaction is present which, together with secondary hydrogen bonding results in the formation of mostly two-dimensional network structures, exceptions being with compounds 4 and 5 (one-dimensional) and compound 6 (three-dimensional). In only two cases [compounds 1 and 4], are weak cation-anion or cation-cation π-π interactions found while weak aromatic C-H…O interactions are insignificant. The study shows that all compounds fit the previously formulated classification scheme for primary and secondary interactive modes for proton-transfer compounds of 3,5-dinitrosalicylic acid but there are some unusual variants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structures of two hydrated proton-transfer compounds of 4-piperidinecarboxamide (isonipecotamide) with the isomeric heteroaromatic carboxylic acids indole-2-carboxylic acid and indole-3-carboxylic acid, namely 4-carbamoylpiperidinium indole-2-carboxylate dihydrate (1) and 4-carbamoylpiperidinium indole-3-carboxylate hemihydrate (2) have been determined at 200 K. Crystals of both 1 and 2 are monoclinic, space groups P21/c and P2/c respectively with Z = 4 in cells having dimensions a = 10.6811(4), b = 12.2017(4), c = 12.5456(5) Å, β = 96.000(4)o (1) and a = 15.5140(4), b = 10.2908(3), c = 9.7047(3) Å, β = 97.060(3)o (2). Hydrogen-bonding in 1 involves a primary cyclic interaction involving complementary cation amide N-H…O(carboxyl) anion and anion hetero N-H…O(amide) cation hydrogen bonds [graph set R22(9)]. Secondary associations involving also the water molecules of solvation give a two-dimensional network structure which includes weak water O-H…π interactions. In the three-dimensional hydrogen-bonded structure of 2, there are classic centrosymmetric cyclic head-to-head hydrogen-bonded amide-amide interactions [graph set R22(8)] as well as lateral cyclic amide-O linked amide-amide extensions [graph set R24(8)]. The anions and the water molecule, which lies on a twofold rotation axis, are involved in secondary extensions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Programmed cell death (PCD) and progenitor cell generation (of glial and in some brain areas also neuronal fate) in the CNS is an active process throughout life and is generally not associated with gliosis which means that PCD can be pathologically silent. The striking discovery that progenitor cell generation (of glial and in some brain areas neuronal fate) is widespread in the adult CNS (especially the hippocampus) suggest a much more dynamic scenario than previously thought and transcends the dichotomy between neurodevelopmental and neurodegenerative models of schizophrenia and related disorders. We suggest that the regulatory processes that control the regulation of PCD and the generation of progenitor cells may be disturbed in the early phase of psychotic disorders underpinning a disconnectivity syndrom at the onset of clinically overt disorders. An ongoing 1H-MRS study of the anterior hippocampus at 3 Tesla in mostly drug-naive first-episode psychosis patients suggests no change in NAA, but significant increases in myo-inositol and lactate. The data suggests that neuronal integrity in the anterior hippocampus is still intact at the early stage of illness or mainly only functionally impaired. However the increase in lactate and myo-inositol may reflect a potential disturbance of generation and PCD of progenitor cells (of glial and in selected brain areas also neuronal fate) at the onset of psychosis. If true the use of neuroprotective agents such as lithium or eicosapentaenoic acid (which inhibit PCD and support cell generation)in the early phase of psychotic disorders may be a potent treatment avenue to explore.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, semi-analytical expressions of the effective hydraulic conductivity ( KE) and macrodispersivity ( αE) for 3D steady-state density-dependent groundwater flow are derived using a stationary spectral method. Based on the derived expressions, we present the dependence of KE and αE on the density of fluid under different dispersivity and spatial correlation scale of hydraulic conductivity. The results show that the horizontal KE and αE are not affected by density-induced flow. However, due to gravitational instability of the fluid induced by density contrasts, both vertical KE and αE are found to be reduced slightly when the density factor ( γ ) is less than 0.01, whereas significant decreases occur when γ exceeds 0.01. Of note, the variation of KE and αE is more significant when local dispersivity is small and the correlation scale of hydraulic conductivity is large.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biological validation of new radiotherapy modalities is essential to understand their therapeutic potential. Antiprotons have been proposed for cancer therapy due to enhanced dose deposition provided by antiproton-nucleon annihilation. We assessed cellular DNA damage and relative biological effectiveness (RBE) of a clinically relevant antiproton beam. Despite a modest LET (~19 keV/μm), antiproton spread out Bragg peak (SOBP) irradiation caused significant residual γ-H2AX foci compared to X-ray, proton and antiproton plateau irradiation. RBE of ~1.48 in the SOBP and ~1 in the plateau were measured and used for a qualitative effective dose curve comparison with proton and carbon-ions. Foci in the antiproton SOBP were larger and more structured compared to X-rays, protons and carbon-ions. This is likely due to overlapping particle tracks near the annihilation vertex, creating spatially correlated DNA lesions. No biological effects were observed at 28–42 mm away from the primary beam suggesting minimal risk from long-range secondary particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structures of the anhydrous proton-transfer compounds of the sulfa drug sulfamethazine with 5-nitrosalicylic acid and picric acid, namely 2-(4-aminobenzenesulfonamido)-4,6-dimethylpyrimidinium 2-hydroxy-5-nitrobenzoate, C12H15N4O2S(+)·C7H4NO4(-), (I), and 2-(4-aminobenzenesulfonamido)-4,6-dimethylpyrimidinium 2,4,6-trinitrophenolate, C12H15N4O2S(+)·C6H2N3O7(-), (II), respectively, have been determined. In the asymmetric unit of (I), there are two independent but conformationally similar cation-anion heterodimer pairs which are formed through duplex intermolecular N(+)-H...Ocarboxylate and N-H...Ocarboxylate hydrogen-bond pairs, giving a cyclic motif [graph set R2(2)(8)]. These heterodimers form separate and different non-associated substructures through aniline N-H...O hydrogen bonds, one one-dimensional, involving carboxylate O-atom acceptors, the other two-dimensional, involving both carboxylate and hydroxy O-atom acceptors. The overall two-dimensional structure is stabilized by π-π interactions between the pyrimidinium ring and the 5-nitrosalicylate ring in both heterodimers [minimum ring-centroid separation = 3.4580 (8) Å]. For picrate (II), the cation-anion interaction involves a slightly asymmetric chelating N-H...O R2(1)(6) hydrogen-bonding association with the phenolate O atom, together with peripheral conjoint R1(2)(6) interactions between the same N-H groups and O atoms of the ortho-related nitro groups. An inter-unit amine N-H...Osulfone hydrogen bond gives one-dimensional chains which extend along a and inter-associate through π-π interactions between the pyrimidinium rings [centroid-centroid separation = 3.4752 (9) Å]. The two structures reported here now bring to a total of four the crystallographically characterized examples of proton-transfer salts of sulfamethazine with strong organic acids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a methodology for determining the vertical hydraulic conductivity (Kv) of an aquitard, in a multilayered leaky system, based on the harmonic analysis of arbitrary water-level fluctuations in aquifers. As a result, Kv of the aquitard is expressed as a function of the phase-shift of water-level signals measured in the two adjacent aquifers. Based on this expression, we propose a robust method to calculate Kv by employing linear regression analysis of logarithm transformed frequencies and phases. The frequencies, where the Kv are calculated, are identified by coherence analysis. The proposed methods are validated by a synthetic case study and are then applied to the Westbourne and Birkhead aquitards, which form part of a five-layered leaky system in the Eromanga Basin, Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The importance of applying unsaturated soil mechanics to geotechnical engineering design has been well understood. However, the consumption of time and the necessity for a specific laboratory testing apparatus when measuring unsaturated soil properties have limited the application of unsaturated soil mechanics theories in practice. Although methods for predicting unsaturated soil properties have been developed, the verification of these methods for a wide range of soil types is required in order to increase the confidence of practicing engineers in using these methods. In this study, a new permeameter was developed to measure the hydraulic conductivity of unsaturated soils using the steady-state method and directly measured suction (negative pore-water pressure) values. The apparatus is instrumented with two tensiometers for the direct measurement of suction during the tests. The apparatus can be used to obtain the hydraulic conductivity function of sandy soil over a low suction range (0-10 kPa). Firstly, the repeatability of the unsaturated hydraulic conductivity measurement, using the new permeameter, was verified by conducting tests on two identical sandy soil specimens and obtaining similar results. The hydraulic conductivity functions of the two sandy soils were then measured during the drying and wetting processes of the soils. A significant hysteresis was observed when the hydraulic conductivity was plotted against the suction. However, the hysteresis effects were not apparent when the conductivity was plotted against the volumetric water content. Furthermore, the measured unsaturated hydraulic conductivity functions were compared with predictions using three different predictive methods that are widely incorporated into numerical software. The results suggest that these predictive methods are capable of capturing the measured behavior with reasonable agreement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Faulted stacking layers are ubiquitously observed during the crystal growth of semiconducting nanowires (NWs). In this paper, we employ the reverse non-equilibrium molecular dynamics simulation to elucidate the effect of various faulted stacking layers on the thermal conductivity (TC) of silicon (Si) NWs. We find that the stacking faults can greatly reduce the TC of the Si NW. Among the different stacking faults that are parallel to the NW's axis, the 9R polytype structure, the intrinsic and extrinsic stacking faults (iSFs and eSFs) exert more pronounced effects in the reduction of TC than the twin boundary (TB). However, for the perpendicularly aligned faulted stacking layers, the eSFs and 9R polytype structures are observed to induce a larger reduction to the TC of the NW than the TB and iSFs. For all considered NWs, the TC does not show a strong relation with the increasing number of faulted stacking layers. Our studies suggest the possibility of tuning the thermal properties of Si NWs by altering the crystal structure via the different faulted stacking layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exploring thermal transport in graphene-polymer nanocomposite is significant to its applications with better thermal properties. Interfacial thermal conductance between graphene and polymer matrix plays a critical role in the improvement of thermal conductivity of graphene-polymer nanocomposite. Unfortunately, it is still challenging to understand the interfacial thermal transport between graphene nanofiller and polymer matrix at small material length scale. To this end, using non-equilibrium molecular dynamics simulations, we investigate the interfacial thermal conductance of graphene-polyethylene (PE) nanocomposite. The influence of functionalization with hydrocarbon chains on the interfacial thermal conductance of graphene-polymer nanocomposites was studied, taking into account of the effects of model size and thermal conductivity of graphene. An analytical model is also used to calculate the thermal conductivity of nanocomposite. The results are considered to contribute to development of new graphene-polymer nanocomposites with tailored thermal properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composites with carbon nanotubes are becoming increasingly used in energy storage and electronic devices, due to incorporated excellent properties from carbon nanotubes and polymers. Although their properties make them more attractive than conventional smart materials, their electrical properties are found to be temperature-dependent which is important to consider for the design of devices. To study the effects of temperature in electrically conductive multi-wall carbon nanotube/epoxy composites, thin films were prepared and the effect of temperature on the resistivity, thermal properties and Raman spectral characteristics of the composite films was evaluated. Resistivity-temperature profiles showed three distinct regions in as-cured samples and only two regions in samples whose thermal histories had been erased. In the vicinity of the glass transition temperature, the as-cured composites exhibited pronounced resistivity and enthalpic relaxation peaks, which both disappeared after erasing the composites’ thermal histories by temperature cycling. Combined DSC, Raman spectroscopy, and resistivity-temperature analyses indicated that this phenomenon can be attributed to the physical aging of the epoxy matrix and that, in the region of the observed thermal history-dependent resistivity peaks, structural rearrangement of the conductive carbon nanotube network occurs through a volume expansion/relaxation process. These results have led to an overall greater understanding of the temperature-dependent behaviour of conductive carbon nanotube/epoxy composites, including the positive temperature coefficient effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structures of the compounds from the reaction of the drug dapsone [4-(4-aminophenylsulfonyl)aniline] with 3,5-dinitrosalicylic acid, the salt hydrate [4-(4-aminohenylsulfonyl)anilinium 2-carboxy-4,6-dinitrophenolate monohydrate] (1) and the 1:1 adduct with 5-nitroisophthalic acid [4-(4-aminophenylsulfonyl)aniline 5-nitrobenzene-1,3-dicarboxylic acid] (2) have been determined. Crystals of 1 are triclinic, space group P-1, with unit cell dimensions a = 8.2043(3), b = 11.4000(6), c = 11.8261(6)Å, α = 110.891(5), β = 91.927(3), γ = 98.590(4)deg. and Z = 4. Compound 2 is orthorhombic, space group Pbcn, with unit cell dimensions a = 20.2662(6), b = 12.7161(4), c = 15.9423(5)Å and Z = 8. In 1, intermolecular analinium N-H…O and water O-H…O and O-H…N hydrogen-bonding interactions with sulfone, carboxyl, phenolate and nitro O-atom and aniline N-atom acceptors give a two-dimensional layered structure. With 2, the intermolecular interactions involve both aniline N-H…O and carboxylic acid O-H…O and O-H…N hydrogen bonds to sulfone, carboxyl, nitro and aniline acceptors, giving a three-dimensional network structure. In both structures π--π aromatic ring associations are present.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structures of the 1:1 hydrated proton-transfer compounds of isonipecotamide (piperidine-4-carboxamide) with oxalic acid, 4-carbamoylpiperidinium hydrogen oxalate dihydrate, C6H13N2O+·C2HO4-·2H2O, (I), and with adipic acid, bis­(4-car­bam­oylpiperidinium) adipate dihydrate, 2C6H13N2O+·C6H8O42-·2H2O, (II), are three-dimensional hydrogen-bonded constructs involving several different types of enlarged water-bridged cyclic associations. In the structure of (I), the oxalate monoanions give head-to-tail carb­oxy­lic acid O-HOcarboxyl hydrogen-bonding inter­actions, forming C(5) chain substructures which extend along a. The isonipecotamide cations also give parallel chain substructures through amide N-HO hydrogen bonds, the chains being linked across b and down c by alternating water bridges involving both carboxyl and amide O-atom acceptors and amide and piperidinium N-HOcarboxyl hydrogen bonds, generating cyclic R43(10) and R32(11) motifs. In the structure of (II), the asymmetric unit comprises a piperidinium cation, half an adipate dianion, which lies across a crystallographic inversion centre, and a solvent water mol­ecule. In the crystal structure, the two inversion-related cations are inter­linked through the two water mol­ecules, which act as acceptors in dual amide N-HOwater hydrogen bonds, to give a cyclic R42(8) association which is conjoined with an R44(12) motif. Further N-HOwater, water O-HOamide and piperidinium N-HOcarbox­yl hydrogen bonds give the overall three-dimensional structure. The structures reported here further demonstrate the utility of the isonipecotamide cation as a synthon for the generation of stable hydrogen-bonded structures. The presence of solvent water mol­ecules in these structures is largely responsible for the non-occurrence of the common hydrogen-bonded amide-amide dimer, promoting instead various expanded cyclic hydrogen-bonding motifs.