956 resultados para PROTEIN-DRUG BINDING


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The herpes simplex virus type 1 origin of DNA replication, oriS, contains three copies of the recognition sequence for the viral initiator protein, origin binding protein (OBP), arranged in two palindromes. The central box I forms a short palindrome with box III and a long palindrome with box II. Single-stranded oriS adopts a conformation, oriS*, that is tightly bound by OBP. Here we demonstrate that OBP binds to a box III–box I hairpin with a 3′ single-stranded tail in oriS*. Mutations designed to destabilize the hairpin abolish the binding of OBP to oriS*. The same mutations also inhibit DNA replication. Second site complementary mutations restore binding of OBP to oriS* as well as the ability of mutated oriS to support DNA replication. OriS* is also an efficient activator of the hydrolysis of ATP by OBP. Sequence analyses show that a box III–box I palindrome is an evolutionarily conserved feature of origins of DNA replication from human, equine, bovine, and gallid alpha herpes viruses. We propose that oriS facilitates initiation of DNA synthesis in two steps and that OBP exhibits exquisite specificity for the different conformations oriS adopts at these stages. Our model suggests that distance-dependent cooperative binding of OBP to boxes I and II in duplex DNA is succeeded by specific recognition of a box III–box I hairpin in partially unwound DNA.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To gain entry into cells, viruses utilize a variety of different cell-surface molecules. Foot-and-mouth disease virus (FMDV) binds to cell-surface integrin molecules via an arginine-glycine-aspartic acid (RGD) sequence in capsid protein VP1. Binding to this particular cell-surface molecule influences FMDV tropism, and virus/receptor interactions appear to be responsible, in part, for selection of antigenic variants. To study early events of virus-cell interaction, we engineered an alternative and novel receptor for FMDV. Specifically, we generated a new receptor by fusing a virus-binding, single-chain antibody (scAb) to intracellular adhesion molecule 1 (ICAM1). Cells that are normally not susceptible to FMDV infection became susceptible after being transfected with DNA encoding the scAb/ICAM1 protein. An escape mutant (B2PD.3), derived with the mAb used to generate the genetically engineered receptor, was restricted for growth on the scAb/ICAM1 cells, but a variant of B2PD.3 selected by propagation on scAb/ICAM1 cells grew well on these cells. This variant partially regained wild-type sequence in the epitope recognized by the mAb and also regained the ability to be neutralize by the mAb. Moreover, RGD-deleted virions that are noninfectious in animals and other cell types grew to high titers and were able to form plaques on scAb/ ICAM1 cells. These studies demonstrate the first production of a totally synthetic cell-surface receptor for a virus. This novel approach will be useful for studying virus reception and for the development of safer vaccines against viral pathogens of animals and humans.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Voltage-gated Na+ channels are the molecular targets of local anesthetics, class I antiarrhythmic drugs, and some anticonvulsants. These chemically diverse drugs inhibit Na+ channels with complex voltage- and frequency-dependent properties that reflect preferential drug binding to open and inactivated channel states. The site-directed mutations F1764A and Y1771A in transmembrane segment IVS6 of type IIA Na+ channel alpha subunits dramatically reduce the affinity of inactivated channels for the local anesthetic etidocaine. In this study, we show that these mutations also greatly reduce the sensitivity of Na+ channels to state-dependent block by the class Ib antiarrhythmic drug lidocaine and the anticonvulsant phenytoin and, to a lesser extent, reduce the sensitivity to block by the class Ia and Ic antiarrhythmic drugs quinidine and flecainide. For lidocaine and phenytoin, which bind preferentially to inactivated Na+ channels, the mutation F1764A reduced the affinity for binding to the inactivated state 24.5-fold and 8.3-fold, respectively, while Y1771A had smaller effects. For quinidine and flecainide, which bind preferentially to the open Na+ channels, the mutations F1764A and Y1771A reduced the affinity for binding to the open state 2- to 3-fold. Thus, F1764 and Y1771 are common molecular determinants of state-dependent binding of diverse drugs including lidocaine, phenytoin, flecainide, and quinidine, suggesting that these drugs interact with a common receptor site. However, the different magnitude of the effects of these mutations on binding of the individual drugs indicates that they interact in an overlapping, but nonidentical, manner with a common receptor site. These results further define the contributions of F1764 and Y1771 to a complex drug receptor site in the pore of Na+ channels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The adeno-associated virus (AAV) genome integrates site specifically into a defined region of human chromosome 19 (termed AAVS1). Using a functional assay for AAV integration into AAVS1 DNA propagated as an episome, we obtained evidence that a 33-nucleotide AAVS1 DNA sequence contains the minimum signal required for targeted integration. The recombination signal comprises a DNA-binding motif for the AAV regulatory Rep protein [Rep binding site (RBS)] separated by an eight-nucleotide spacer from a sequence that can act as a substrate for Rep endonucleolytic activity [terminal resolution site (TRS)]. Mutations in either the AAVS1-encoded RBS or TRS elements abort targeted integration. Since both the RBS and TRS elements are present in the viral origin of replication and are required for AAV replication, targeted integration into chromosome 19 AAVS1 DNA may involve a replicative type of recombination that is discussed. An additional chromosome 19 element, which is responsible for DNA rearrangements in episomes propagating AAVS1 DNA, was identified and shown not to be required for AAV episomal integration, despite its location adjacent to the recombination signal.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tissue and cell-type specific expression of the rat osteocalcin (rOC) gene involves the interplay of multiple transcriptional regulatory factors. In this report we demonstrate that AML-1 (acute myeloid leukemia-1), a DNA-binding protein whose genes are disrupted by chromosomal translocations in several human leukemias, interacts with a sequence essential for enhancing tissue-restricted expression of the rOC gene. Deletion analysis of rOC promoter-chloramphenicol acetyltransferase constructs demonstrates that an AML-1-binding sequence within the proximal promoter (-138 to -130 nt) contributes to 75% of the level of osteocalcin gene expression. The activation potential of the AML-1-binding sequence has been established by overexpressing AML-1 in osteoblastic as well as in nonosseous cell lines. Overexpression not only enhances rOC promoter activity in osteoblasts but also mediates OC promoter activity in a nonosseous human fibroblastic cell line. A probe containing this site forms a sequence specific protein-DNA complex with nuclear extracts from osteoblastic cells but not from nonosseous cells. Antisera supershift experiments indicate the presence of AML-1 and its partner protein core-binding factor beta in this osteoblast-restricted complex. Mutations of the critical AML-1-binding nucleotides abrogate formation of the complex and strongly diminish promoter activity. These results indicate that an AML-1 related protein is functional in cells of the osteoblastic lineage and that the AML-1-binding site is a regulatory element important for osteoblast-specific transcriptional activation of the rOC gene.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

While most effects of dopamine in the brain are mediated by the D1 and D2 receptor subtypes, other members of this G protein-coupled receptor family have potentially important functions. D3 receptors belong to the D2-like subclass of dopamine receptors, activation of which inhibits adenylyl cyclase. Using targeted mutagenesis in mouse embryonic stem cells, we have generated mice lacking functional D3 receptors. A premature chain-termination mutation was introduced in the D3 receptor gene after residue Arg-148 in the second intracellular loop of the predicted protein sequence. Binding of the dopamine antagonist [125I]iodosulpride to D3 receptors was absent in mice homozygous for the mutation and greatly reduced in heterozygous mice. Behavioral analysis of mutant mice showed that this mutation is associated with hyperactivity in an exploratory test. Homozygous mice lacking D3 receptors display increased locomotor activity and rearing behavior. Mice heterozygous for the D3 receptor mutation show similar, albeit less pronounced, behavioral alterations. Our findings indicate that D3 receptors play an inhibitory role in the control of certain behaviors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

RAS gene-encoded p21 protein has been found to increase in vitro phosphorylation of JUN via its kinase, JUN N-terminal kinase (JNK). This effect is mediated by increased phosphorylation of JNK in the presence of wild-type and oncogenic (Val-12) p21 protein in a dose-dependent manner. Oncogenic p21 protein is more potent in mediating this effect than its normal counterpart. Both normal and oncogenic p21 proteins bind to purified JNK and to JNK that is present in cell extracts from transformed fibroblasts and melanoma cells. Oncogenic and normal p21 proteins have also been found to bind to bacterially expressed JUN protein. This binding is dose dependent, enhanced by the presence of GTP, and depends on the presence of the first 89 amino acids of JUN (the delta domain), as it does not occur with v-jun. While the ability of both normal and oncogenic p21 proteins to bind JNK is strongly inhibited by a p21 peptide corresponding to aa 96-110, and more weakly inhibited by the p21 peptide corresponding to aa 115-126, p21-JUN interaction is inhibited by peptides corresponding to aa 96-110 and, to a lesser degree, by peptides corresponding to aa 35-47. The results suggest that the p21 protein interacts specifically with both JNK and JUN proteins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have developed a general method for the specific and reversible immobilization of proteins fused to the choline-binding module C-LytA on functionalized graphite electrodes. Graphite electrode surfaces were modified by diazonium chemistry to introduce carboxylic groups that were subsequently used to anchor mixed self-assembled monolayers consisting of N,N-diethylethylenediamine groups, acting as choline analogs, and ethanolamine groups as spacers. The ability of the prepared electrodes to specifically bind C-LytA-tagged recombinant proteins was tested with a C-LytA-β-galactosidase fusion protein. The binding, activity and stability of the immobilized protein was evaluated by electrochemically monitoring the formation of an electroactive product in the enzymatic hydrolysis of the synthetic substrate 4-aminophenyl β-D-galactopyranoside. The hybrid protein was immobilized in an specific and reversible way, while retaining the catalytic activity. Moreover, these functionalized electrodes were shown to be highly stable and reusable. The method developed here can be envisaged as a general, immobilization procedure on the protein biosensor field.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lidocaine bears in its structure both an aromatic ring and a terminal amine, which can be protonated at physiological pH, linked by an amide group. Since lidocaine causes multiple inhibitory actions on nicotinic acetylcholine receptors (nAChRs), this work was aimed to determine the inhibitory effects of diethylamine (DEA), a small molecule resembling the hydrophilic moiety of lidocaine, on Torpedo marmorata nAChRs microtransplanted to Xenopus oocytes. Similarly to lidocaine, DEA reversibly blocked acetylcholine-elicited currents (IACh) in a dose-dependent manner (IC50 close to 70 μM), but unlike lidocaine, DEA did not affect IACh desensitization. IACh inhibition by DEA was more pronounced at negative potentials, suggesting an open-channel blockade of nAChRs, although roughly 30% inhibition persisted at positive potentials, indicating additional binding sites outside the pore. DEA block of nAChRs in the resting state (closed channel) was confirmed by the enhanced IACh inhibition when pre-applying DEA before its co-application with ACh, as compared with solely DEA and ACh co-application. Virtual docking assays provide a plausible explanation to the experimental observations in terms of the involvement of different sets of drug binding sites. So, at the nAChR transmembrane (TM) domain, DEA and lidocaine shared binding sites within the channel pore, giving support to their open-channel blockade; besides, lidocaine, but not DEA, interacted with residues at cavities among the M1, M2, M3, and M4 segments of each subunit and also at intersubunit crevices. At the extracellular (EC) domain, DEA and lidocaine binding sites were broadly distributed, which aids to explain the closed channel blockade observed. Interestingly, some DEA clusters were located at the α-γ interphase of the EC domain, in a cavity near the orthosteric binding site pocket; by contrast, lidocaine contacted with all α-subunit loops conforming the ACh binding site, both in α-γ and α-δ and interphases, likely because of its larger size. Together, these results indicate that DEA mimics some, but not all, inhibitory actions of lidocaine on nAChRs and that even this small polar molecule acts by different mechanisms on this receptor. The presented results contribute to a better understanding of the structural determinants of nAChR modulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this study was to investigate whether peptides from the extracellular loops of the tight junction protein occludin could be used as a new principle for tight junction modulation. Peptides of 4 to 47 amino acids in length and covering the two extracellular loops of the tight junction protein occludin were synthesized, and their effect on the tight junction permeability in Caco-2 cells was investigated using [C-14] mannitol as a paracellular marker. Lipopeptide derivatives of one of the active occludin peptides (OPs), synthesized by adding a lipoamino acid containing 14 carbon atoms (C-14-) to the N terminus of the peptide, were also investigated. Peptides corresponding to the N terminus of the first extracellular loop of occludin increased the permeability of the tight junctions without causing short-term toxicity. However, the peptides had an effect only when added to the basolateral side of the cells, which could be partly explained by degradation by apical peptidases and aggregate formation. By contrast, the lipopeptide C-14-OP90-103, which protects the peptide from degradation and aggregation, displayed a rapid apical effect. The L- and D-diastereomers of C-14-OP90-103 had distinctly different effects. The D-isomer, which releases intact OP90-103 from the lipoamino acid, displayed a rapid and transient increase in tight junction permeability. The L- isomer, which releases OP90-103 more rapidly, gave a more sustained increase in tight junction permeability. In conclusion, C-14-OP90-103 represents a prototype of a new class of tight junction modulators that act on the extracellular domains of tight junction proteins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The PDF1.2 gene of Arabidopsis encoding a plant defensin is commonly used as a marker for characterization of the jasmonate-dependent defense responses. Here, using PDF1.2 promoter-deletion lines linked to the beta-glucoronidase-reporter gene, we examined putative promoter elements associated with jasmonate-responsive expression of this gene. Using stably transformed plants, we first characterized the extended promoter region that positively regulates basal expression from the PDF1.2 promoter. Second, using promoter deletion constructs including one from which the GCC-box region was deleted, we observed a substantially lower response to jasmonate than lines carrying this motif. In addition, point mutations introduced into the core GCC-box sequence substantially reduced jasmonate responsiveness, whereas addition of a 20-nucleotide-long promoter element carrying the core GCC-box and flanking nucleotides provided jasmonate responsiveness to a 35S minimal promoter. Taken together, these results indicated that the GCC-box plays a key role in conferring jasmonate responsiveness to the PDF1.2 promoter. However, deletion or specific mutations introduced into the core GCC-box did not completely abolish the jasmonate responsiveness of the promoter, suggesting that the other promoter elements lying downstream from the GCC-box region may also contribute to jasmonate responsiveness. In other experiments, we identified a jasmonate- and pathogen-responsive ethylene response factor transcription factor, AtERF2, which when overexpressed in transgenic Arabidopsis plants activated transcription from the PDF1.2, Thi2.1, and PR4 (basic chitinase) genes, all of which contain a GCC-box sequence in their promoters. Our results suggest that in addition to their roles in regulating ethylene-mediated gene expression, ethylene response factors also appear to play important roles in regulating jasmonate-responsive gene expression, possibly via interaction with the GCC-box.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cells dying by apoptosis are normally cleared by phagocytes through mechanisms that can suppress inflammation and immunity. Molecules of the innate immune system, the pattern recognition receptors (PRRs), are able to interact not only with conserved structures on microbes (pathogen-associated molecular patterns, PAMPs) but also with ligands displayed by apoptotic cells. We reasoned that PRRs might therefore interact with structures on apoptotic cells-apoptotic cell-associated molecular patterns (ACAMPs)-that are analogous to PAMPs. Here we show that certain monoclonal antibodies raised against the prototypic PAMP, lipopolysaccharide (LPS), can crossreact with apoptotic cells. We demonstrate that one such antibody interacts with a constitutively expressed intracellular protein, laminin-binding protein, which translocates to the cell surface during apoptosis and can interact with cells expressing the prototypic PRR, mCD14 as well as with CD14-negative cells. Anti-LPS cross reactive epitopes on apoptotic cells colocalised with annexin V-and C1q-binding sites on vesicular regions of apoptotic cell surfaces and were released associated with apoptotic cell-derived microvesicles (MVs). These results confirm that apoptotic cells and microbes can interact with the immune system through common elements and suggest that anti-PAMP antibodies could be used strategically to characterise novel ACAMPs associated not only with apoptotic cells but also with derived MVs. © 2013 Macmillan Publishers Limited All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The yeast Saccharomyces cerevisiae is an important model organism for the study of cell biology. The similarity between yeast and human genes and the conservation of fundamental pathways means it can be used to investigate characteristics of healthy and diseased cells throughout the lifespan. Yeast is an equally important biotechnological tool that has long been the organism of choice for the production of alcoholic beverages, bread and a large variety of industrial products. For example, yeast is used to manufacture biofuels, lubricants, detergents, industrial enzymes, food additives and pharmaceuticals such as anti-parasitics, anti-cancer compounds, hormones (including insulin), vaccines and nutraceuticals. Its function as a cell factory is possible because of the speed with which it can be grown to high cell yields, the knowledge that it is generally recognized as safe (GRAS) and the ease with which metabolism and cellular pathways, such as translation can be manipulated. In this thesis, these two pathways are explored in the context of their biotechnological application to ageing research: (i) understanding translational processes during the high-yielding production of membrane protein drug targets and (ii) the manipulation of yeast metabolism to study the molecule, L-carnosine, which has been proposed to have anti-ageing properties. In the first of these themes, the yeast strains, spt3?, srb5?, gcn5? and yTHCBMS1, were examined since they have been previously demonstrated to dramatically increase the yields of a target membrane protein (the aquaporin, Fps1) compared to wild-type cells. The mechanisms underlying this discovery were therefore investigated. All high yielding strains were shown to have an altered translational state (mostly characterised by an initiation block) and constitutive phosphorylation of the translational initiation factor, eIF2a. The relevance of the initiation block was further supported by the finding that other strains, with known initiation blocks, are also high yielding for Fps1. A correlation in all strains between increased Fps1 yields and increased production of the transcriptional activator protein, Gcn4, suggested that yields are subject to translational control. Analysis of the 5´ untranslated region (UTR) of FPS1 revealed two upstream open reading frames (uORFs). Mutagenesis data suggest that high yielding strains may circumvent these control elements through either a leaky scanning or a re-initiation mechanism. In the second theme, the dipeptide L-carnosine (ß-alanyl-L-histidine) was investigated: it has previously been shown to inhibit the growth of cancer cells but delay senescence in cultured human fibroblasts and extend the lifespan of male fruit flies. To understand these apparently contradictory properties, the effects of L-carnosine on yeast were studied. S. cerevisiae can respire aerobically when grown on a non-fermentable carbon source as a substrate but has a respiro-fermentative metabolism when grown on a fermentable carbon source; these metabolisms mimic normal cell and cancerous cell metabolisms, respectively. When yeast were grown on fermentable carbon sources, in the presence of L-carnosine, a reduction in cell growth and viability was observed, which was not apparent for cells grown on a non-fermentable carbon source. The metabolism-dependent mechanism was confirmed in the respiratory yeast species Pichia pastoris. Further analysis of S. cerevisiae yeast strains with deletions in their nutrient-sensing pathway, which result in an increase in respiratory metabolism, confirmed the metabolism-dependent effects of L-carnosine.