881 resultados para PROTECTIVE COATINGS
Resumo:
Driver cognitions about aggressive driving of others are potentially important to the development of evidence-based interventions. Previous research has suggested that perceptions that other drivers are intentionally aggressive may influence recipient driver anger and subsequent aggressive responses. Accordingly, recent research on aggressive driving has attempted to distinguish between intentional and unintentional motives in relation to problem driving behaviours. This study assessed driver cognitive responses to common potentially provocative hypothetical driving scenarios to explore the role of attributions in driver aggression. A convenience sample of 315 general drivers 16–64 yrs (M = 34) completed a survey measuring trait aggression (Aggression Questionnaire AQ), driving anger (Driving Anger Scale, DAS), and a proxy measure of aggressive driving behaviour (Australian Propensity for Angry Driving AusPADS). Purpose designed items asked for drivers’ ‘most likely’ thought in response to AusPADS scenarios. Response options were equivalent to causal attributions about the other driver. Patterns in endorsements of attribution responses to the scenarios suggested that drivers tended to adopt a particular perception of the driving of others regardless of the depicted circumstances: a driving attributional style. No gender or age differences were found for attributional style. Significant differences were detected between attributional styles for driving anger and endorsement of aggressive responses to driving situations. Drivers who attributed the on-road event to the other being an incompetent or dangerous driver had significantly higher driving anger scores and endorsed significantly more aggressive driving responses than those drivers who attributed other driver’s behaviour to mistakes. In contrast, drivers who gave others the ‘benefit of the doubt’ endorsed significantly less aggressive driving responses than either of these other two groups, suggesting that this style is protective.
Resumo:
The consequences of falls are often dreadful for individuals with lower limb amputation using bone-anchored prosthesis.[1-5] Typically, the impact on the fixation is responsible for bending the intercutaneous piece that could lead to a complete breakage over time. .[3, 5-8] The surgical replacement of this piece is possible but complex and expensive. Clearly, there is a need for solid data enabling an evidence-based design of protective devices limiting impact forces and torsion applied during a fall. The impact on the fixation during an actual fall is obviously difficult to record during a scientific experiment.[6, 8-13] Consequently, Schwartze and colleagues opted for one of the next best options science has to offer: simulation with an able-bodied participant. They recorded body movements and knee impacts on the floor while mimicking several plausible falling scenarios. Then, they calculated the forces and moments that would be applied at four levels along the femur corresponding to amputation heights.[6, 8-11, 14-25] The overall forces applied during the falls were similar regardless of the amputation height indicating that the impact forces were simply translated along the femur. As expected, they showed that overall moments generally increased with amputation height due to changes in lever arm. This work demonstrates that devices preventing only against force overload do not require considering amputation height while those protecting against bending moments should. Another significant contribution is to provide, for the time, the magnitude of the impact load during different falls. This loading range is crucial to the overall design and, more precisely, the triggering threshold of protective devices. Unfortunately, the analysis of only a single able-bodied participant replicating falls limits greatly the generalisation of the findings. Nonetheless, this case study is an important milestone contributing to a better understanding of load impact during a fall. This new knowledge will improve the treatment, the safe ambulation and, ultimately, the quality of life of individuals fitted with bone-anchored prosthesis.
Resumo:
Objective Explosive ordnance disposal (EOD) often requires technicians to wear multiple protective garments in challenging environmental conditions. The accumulative effect of increased metabolic cost coupled with decreased heat dissipation associated with these garments predisposes technicians to high levels of physiological strain. It has been proposed that a perceptual strain index (PeSI) using subjective ratings of thermal sensation and perceived exertion as surrogate measures of core body temperature and heart rate, may provide an accurate estimation of physiological strain. Therefore, this study aimed to determine if the PeSI could estimate the physiological strain index (PSI) across a range of metabolic workloads and environments while wearing heavy EOD and chemical protective clothing. Methods Eleven healthy males wore an EOD and chemical protective ensemble while walking on a treadmill at 2.5, 4 and 5.5 km·h− 1 at 1% grade in environmental conditions equivalent to wet bulb globe temperature (WBGT) 21, 30 and 37 °C. WBGT conditions were randomly presented and a maximum of three randomised treadmill walking trials were completed in a single testing day. Trials were ceased at a maximum of 60-min or until the attainment of termination criteria. A Pearson's correlation coefficient, mixed linear model, absolute agreement and receiver operating characteristic (ROC) curves were used to determine the relationship between the PeSI and PSI. Results A significant moderate relationship between the PeSI and the PSI was observed [r = 0.77; p < 0.001; mean difference = 0.8 ± 1.1 a.u. (modified 95% limits of agreement − 1.3 to 3.0)]. The ROC curves indicated that the PeSI had a good predictive power when used with two, single-threshold cut-offs to differentiate between low and high levels of physiological strain (area under curve: PSI three cut-off = 0.936 and seven cut-off = 0.841). Conclusions These findings support the use of the PeSI for monitoring physiological strain while wearing EOD and chemical protective clothing. However, future research is needed to confirm the validity of the PeSI for active EOD technicians operating in the field.
Resumo:
Tight networks of interwoven carbon nanotube bundles are formed in our highly conductive composite. The composite possesses propertiessuggesting a two-dimensional percolative network rather than other reported dispersions displaying three-dimensional networks. Binding nanotubes into large but tight bundles dramatically alters the morphology and electronic transport dynamics of the composite. This enables itto carry higher levels of charge in the macroscale leading to conductivities as high as 1600 S/cm. We now discuss in further detail, the electronic and physical properties of the nanotube composites through Raman spectroscopy and transmission electron microscopy analysis. When controlled and usedappropriately, the interesting properties of these composites reveal their potential for practical device applications. For instance, we used this composite to fabricate coatings, whic improve the properties of an electromagnetic antenna/amplifier transducer. The resulting transducer possesses a broadband range up to GHz frequencies. A strain gauge transducer was also fabricated using changes in conductivity to monitor structural deformations in the composite coatings.
Resumo:
Supply chain outsourcing has posed problems for conventional labour regulation, which focuses on employers contracting directly with workers, particularly employees. These difficulties have been exacerbated by the traditional trifurcated approach to regulation of pay and conditions, work health and safety and workers’ compensation. This paper analyses the parallel interaction of two legal developments within the Australian textile, clothing and footwear industry. The first is mandatory contractual tracking mechanisms within state and federal labour laws and the second is the duties imposed by the harmonised Work Health and Safety Acts. Their combined effect has created an innovative, fully enforceable and integrated regulatory framework for the textile, clothing and footwear industry and, it is argued, other supply chains in different industry contexts. This paper highlights how regulatory solutions can address adverse issues for workers at the bottom of contractual networks, such as fissured workplaces and capital fragmentation, by enabling regulators to harness the commercial power of business controllers at the apex to ensure compliance throughout the entire chain.
Resumo:
A number of coating materials have been developed over past two decades seeking to improve the osseointegration of orthopedic metal implants. Despite the many candidate materials trialed, their low rate of translation into clinical applications suggests there is room for improving the current strategies for their development. We therefore propose that the ideal coating material(s) should possess the following three properties: (i) high bonding strength, (ii) release of functional ions, and (iii) favourable osteoimmunomodulatory effects. To test this proposal, we developed clinoenstatite (CLT, MgSiO3), which as a coating material has high bonding strength, cytocompability and immunomodulatory effects that are favourable for in vivo osteogenesis. The bonding strength of CLT coatings was 50.1 ± 3.2 MPa, more than twice that of hydroxyapatite (HA) coatings, at 23.5 ± 3.5 MPa. CLT coatings released Mg and Si ions, and compared to HA coatings, induced an immunomodulation more conducive for osseointegration, demonstrated by downregurelation of pro-inflammatory cytokines, enhancement of osteogenesis, and inhibition of osteoclastogenesis. In vivo studies demonstrated that CLT coatings improved osseointegration with host bone, as shown by the enhanced biomechanical strength and increased de novo bone formation, when compared with HA coatings. These results support the notion that coating materials with the proposed properties can induce an in vivo environment better suited for osseointegration. These properties could, therefore, be fundamental when developing high-performance coating materials.
Resumo:
A novel protective covering with a layered and staggered structure was proposed to protect concrete against projectile impact. Experimental study was conducted to investigate the ballistic behaviour of the concrete targets against 12.7 mm armour-piercing incendiary projectile at velocities ranging from 537.7 to 596.5 m/s. The results showed that the concrete targets with protective covering exhibited superior integrity with no damage on the distal surface, whereas the concrete targets without protective covering were fractured with penetrating cracks throughout the thickness of the target. Moreover, the protected concrete targets displayed significantly reduced penetration depth compared with the concrete targets without protective covering. The protective covering with epoxy adhesive interlayers had a bigger protection factor than that with silicone sealant interlayers, but the former suffered more severe damage than the latter.
Resumo:
Objective - To determine the prevalence of ankylosing spondylitis in the Fula ethnic group in The Gambia, and relate the disease prevalence to the B27 frequency and subtype distribution of that population. Methods - 215 first degree relatives of 48 B27 positive Fula twin pairs, and 900 adult Fula males were screened for ankylosing spondylitis by clinical and, where appropriate, radiographic means. The B27 prevalence was determined by PCR/sequence specific oligonucleotides on finger prick samples from 100 unrelated Fula, and B27 subtype distribution by SSCP on unrelated B27 positive individuals. This data were then compared with the prevalence of ankylosing spondylitis among B27 positive Caucasians. Results - No case of ankylosing spondylitis was seen. Six per cent of Fula are B27 positive, of which 32% are B*2703 and 68% B*2705. Assuming the penetrance of ankylosing spondylitis in B27 positive Fula is the same as in B27 positive Caucasians, the probability of not observing any cases of ankylosing spondylitis among the Fula examined is remote (P = 6.7 x 10-6). Similarly, the chance of not seeing any cases among those expected to be either B*2705 or B*2703 was small (P = 3.2 x 10-4 for B*2705, and P = 0.02 for B*2703). Conclusions - The risk of developing ankylosing spondylitis in B27 positive Fula is lower than in B27 positive Caucasians. This is not explained by the B27 subtype distribution among Fula, and suggests the presence of some non-B27 protective factor reducing the prevalence of ankylosing spondylitis in this population.
Resumo:
As mentioned in the letter by van der Linden and van der Heijde, Jurgen Braun’s excellent recent paper describing a survey of blood donors by questionnaire, clinical, and magnetic resonance imaging examinations revealed a prevalence of ankylosing spondylitis in B27 positive blood donors (6.4%)1-1 very similar to that reported by Gran et al(6.7%).1-2 It is probable that some of the differences in reported prevalence of ankylosing spondylitis by the various studies are because of methodological differences.
Resumo:
Plasma sprayable powders were prepared from ZrO2-CaO-CeO2 system using an organic binder and coated onto stainless steel substrates previously coated by a bond coat (Ni 22Cr 20Al 1.0Y) using plasma spraying. The coatings exhibited good thermal barrier characteristics and excellent resistance to thermal shock at 1000 degrees C under simulated laboratory conditions (90 half hour cycles without failure) and at 1200 degrees C under accelerated burner rig test conditions (500 2 min cycles without failure). No destabilization of cubic/tetragonal ZrO2 phase fraction occured either during the long hours (45 h cumulative) or the large number of thermal shock tests. Growth of a distinct SiO2 rich region within the ceramic was observed in the specimens thermal shock cycled at 1000 degrees C apart from mild oxidation of the bond coat. The specimens tested at 1200 degrees C had a glassy appearance on the top surface and exhibited severe oxidation of the bond coat at the ceramic-bond coat interface. The glassy appearance of the surface is due to the formation of a liquid silicate layer attributable to the impurity phase present in commercial grade ZrO2 powder. These observations are supported by SEM analysis and quantitative EDAX data.
Resumo:
Commercially available mullite (3Al(2)O(3). 2SiO(2)) powders containing oxides of calcium and iron as impurities, have been made suitable for plasma spraying by using an organic binder. Stainless steel substrates covered with Ni-22Cr-10Al-1.0Y bond coat were spray coated with mullite, The 425 mu m thick coatings were subjected to thermal shock cycling under burner rig conditions between 1000 and 1200 degrees C and less than 200 degrees C with holding times of 1, 5, and 30 min. While the coatings withstood as high as 1000 shock cycles without failure between 1000 and 200 degrees C, spallation occurred early at 120 cycles when shocked from 1200 degrees C, The coatings appeared to go through a process of self erosion at high temperatures resulting in loss of material. Also observed were changes attributable to melting of the silicate grains, which smooth down the surface. Oxidation of the bond coat did not appear to influence the failure, These observations were supported by detailed scanning electron microscopy and quantitative chemical composition analysis, differential thermal analysis, and surface roughness measurements.
Resumo:
The hemagglutinin (H) protein of Rinderpest virus expressed by a recombinant buculovirus used as a vaccine produced high titres of neutralizing antibody to Rinderpest virus in the vaccinated cattle, comparable to the levels produced by live attenuated vaccine. The immunized cattle were protected against a vaccine-virus challenge, as demonstrated by the failure of development of antibodies to N protein of the vaccine virus. The lack of replication of vaccine virus in the immunized cattle indicated that they are capable of showing a protective response if challenged with a virulent virus.
Resumo:
A defect-selective photothermal imaging system for the diagnostics of optical coatings is demonstrated. The instrument has been optimized for pump and probe parameters, detector performance, and signal processing algorithm. The imager is capable of mapping purely optical or thermal defects efficiently in coatings of low damage threshold and low absorbance. Detailed mapping of minor inhomogeneities at low pump power has been achieved through the simultaneous action of a low-noise fiber optic photothermal beam defection sensor and a common-mode-rejection demodulation (CMRD) technique. The linearity and sensitivity of the sensor have been examined theoretically and experimentally, and the signal to noise ratio improvement factor is found to be about 110 compared to a conventional bicell photodiode. The scanner is so designed that mapping of static or shock sensitive samples is possible. In the case of a sample with absolute absorptance of 3.8 x 10(-4), a change in absorptance of about 0.005 x 10(-4) has been detected without ambiguity, ensuring a contrast parameter of 760. This is about 1085% improvement over the conventional approach containing a bicell photodiode, at the same pump power. The merits of the system have been demonstrated by mapping two intentionally created damage sites in a MgF2 coating on fused silica at different excitation powers. Amplitude and phase maps were recorded for thermally thin and thick cases, and the results are compared to demonstrate a case which, in conventional imaging, would lead to a deceptive conclusion regarding the type and location of the damage. Also, a residual damage profile created by long term irradiation with high pump power density has been depicted.
Resumo:
It is shown that prop-2-ynyl esters are useful protecting groups for carboxylic acids and that they are selectively deprotected in the presence of other esters on treatment with tetrathiomolybdate under mild conditions.