944 resultados para PRESSURE-DROP


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The importance of investigating cost reduction in materials and components for solar thermal systems is crucial at the present time. This work focuses on the influence of two different heat exchangers on the performance of a solar thermal system. Both heat exchangers studied are immersed helically coiled, one made with corrugated stainless steel tube, and the other made with finned copper tube with smooth inner surface.A test apparatus has been designed and a simple test procedure applied in order to study heat transfer characteristics and pressure drop of both coils. Thereafter, the resulting experimental data was used to perform a parameter identification of the heat exchangers, in order to obtain a TRNSYS model with its corresponding numerical expression. Also a representative small-scale combisystem model was designed in TRNSYS, in order to study the influence of both heat exchangers on the solar fraction of the system, when working at different flow rates.It has been found that the highest solar fraction is given by the corrugated stainless steel coil, when it works at the lowest flow rate (100 l/hr). For any higher flow rate, the studied copper coil presents a higher solar fraction. The advantageous low flow performance of stainless steel heat exchanger turns out to be beneficial for the particular case of solar thermal systems, where it is well known that low flow collector loops lead to enhanced store stratification, and consequently higher solar fractions.Finally, an optimization of the stainless steel heat exchanger length is carried out, according to economic figures. For the given combisystem model and boundary conditions, the optimum length value is found between 10 and 12 m.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta Tese apresenta uma análise do comportamento térmico de um sistema de aquecimento solar operando por termossifão. Neste tipo de sistema o fluido no coletor solar é circulado por convecção natural, que acontece devido à diferença de massa específica da água ao longo circuito. Nestes sistemas a vazão mássica varia ao longo do dia e do ano, dependendo, dentre outros fatores, da irradiância solar absorvida, do perfil de temperaturas da água no sistema, da geometria, do volume e do perfil de demanda de água quente. Para uma avaliação detalhada do comportamento térmico de aquecedores solares operando por termossifão foram realizados ensaios experimentais e cálculos teóricos. Os resultados dos experimentos concordaram com aqueles apresentados na literatura e sua análise fundamentou o desenvolvimento do aplicativo TermoSim, um programa de simulação computacional do comportamento térmico de sistemas de aquecimento de água com energia solar. O tratamento matemático adotado no TermoSim compreende a modelagem dos coletores solares de acordo com a teoria de Hottel-Bliss-Whillier. O reservatório térmico é modelado com estratificação térmica, convecção e condução entre as camadas. A vazão mássica é obtida a partir do balanço da quantidade de movimento no circuito. Os modelos matemáticos empregados na construção do aplicativo TermoSim foram validados através do confronto dos resultados simulados com medidas experimentais. Foi demonstrado que a utilização destes modelos é adequada e permite reproduzir com precisão o comportamento térmico dos coletores solares e do reservatório térmico. Além do programa TermoSim, foi também desenvolvido o programa TermoDim, que é uma ferramenta para o dimensionamento de sistemas de aquecimento solar, que requer apenas o conhecimento dos parâmetros geométricos do sistema, dados meteorológicos em média mensal e informação a respeito do volume de demanda. O TermoDim é apropriado para estimar o desempenho de aquecedores solares operando por termossifão com tanques verticais e horizontais. O método de dimensionamento do TermoDim é baseado na correlação para a eficiência média mensal obtida neste trabalho a partir de um grande número de simulações.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A formação de emulsão de água-em-óleo gera um significativo incremento na viscosidade, o que afeta diretamente a produção do poço, pois aumenta a perda de carga ao longo da linha de produção, dificultando o escoamento e diminuindo a produção de óleo. A presença e natureza da emulsão, e seu impacto na reologia do petróleo, podem determinar a viabilidade econômica e técnica dos processos envolvidos. A medida que a fração de água aumenta e a temperatura é reduzida, o comportamento das emulsões se torna cada vez mais não-Newtoniano. A decorrência disso, é que a temperatura e a taxa de cisalhamento passam a ter maior impacto na variação da viscosidade das emulsões. Nesse estudo são propostos novos métodos que levam em conta essas variáveis. Os dados reológicos experimentais de 15 petróleos leves foram utilizados para avaliar o desempenho dos modelos existentes na literatura e compará-los com os novos métodos propostos nesse estudo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The oil companies in the area in general are looking for new technologies that can increase the recovery factor of oil contained in reservoirs. These investments are mainly aimed at reducing the costs of projects which are high. Steam injection is one of these special methods of recovery in which steam is injected into the reservoir in order to reduce the viscosity of the oil and make it more mobile. The process assisted gravity drainage steam (SAGD) using steam injection in its mechanism, as well as two parallel horizontal wells. In this process steam is injected through the horizontal injection well, then a vapor chamber is formed by heating the oil in the reservoir and, by the action of gravitational forces, this oil is drained down to where the production well. This study aims to analyze the influence of pressure drop and heat along the injection well in the SAGD process. Numerical simulations were performed using the thermal simulator STARS of CMG (Computer Modeling Group). The parameters studied were the thermal conductivity of the formation, the flow of steam injection, the inner diameter of the column, the steam quality and temperature. A factorial design was used to verify the influence of the parameters studied in the recovery factor. We also analyzed different injection flow rates for the model with pressure drop and no pressure drop, as well as different maximum flow rates of oil production. Finally, we performed an economic analysis of the two models in order to check the profitability of the projects studied. The results showed that the pressure drop in injection well have a significant influence on the SAGD process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nowadays, most of the hydrocarbon reserves in the world are in the form of heavy oil, ultra - heavy or bitumen. For the extraction and production of this resource is required to implement new technologies. One of the promising processes for the recovery of this oil is the Expanding Solvent Steam Assisted Gravity Drainage (ES-SAGD) which uses two parallel horizontal wells, where the injection well is situated vertically above the production well. The completion of the process occurs upon injection of a hydrocarbon additive at low concentration in conjunction with steam. The steam adds heat to reduce the viscosity of the oil and solvent aids in reducing the interfacial tension between oil/ solvent. The main force acting in this process is the gravitational and the heat transfer takes place by conduction, convection and latent heat of steam. In this study was used the discretized wellbore model, where the well is discretized in the same way that the reservoir and each section of the well treated as a block of grid, with interblock connection with the reservoir. This study aims to analyze the influence of the pressure drop and heat along the injection well in the ES-SAGD process. The model used for the study is a homogeneous reservoir, semi synthetic with characteristics of the Brazilian Northeast and numerical simulations were performed using the STARS thermal simulator from CMG (Computer Modelling Group). The operational parameters analyzed were: percentage of solvent injected, the flow of steam injection, vertical distance between the wells and steam quality. All of them were significant in oil recovery factor positively influencing this. The results showed that, for all cases analyzed, the model considers the pressure drop has cumulative production of oil below its respective model that disregards such loss. This difference is more pronounced the lower the value of the flow of steam injection

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During natural gas processing, water removal is considered as a fundamental step in that combination of hydrocarbons and water favors the formation of hydrates. The gas produced in the Potiguar Basin (Brazil) presents high water content (approximately 15000 ppm) and its dehydration is achieved via absorption and adsorption operations. This process is carried out at the Gas Treatment Unit (GTU) in Guamaré (GMR), in the State of Rio Grande do Norte. However, it is a costly process, which does not provide satisfactory results when water contents as low as 0.5 ppm are required as the exit of the GTU. In view of this, microemulsions research is regarded as an alternative to natural gas dehydration activities. Microemulsions can be used as desiccant fluids because of their unique proprieties, namely solubilization enhancement, reduction in interfacial tensions and large interfacial area between continuous and dispersed phases. These are actually important parameters to ensure the efficiency of an absorption column. In this work, the formulation of the desiccant fluid was determined via phases diagram construction, employing there nonionic surfactants (RDG 60, UNTL L60 and AMD 60) and a nonpolar fluid provided by Petrobras GMR (Brazil) typically comprising low-molecular weight liquid hydrocarbons ( a solvent commonly know as aguarrás ). From the array of phases diagrams built, four representative formulations have been selected for providing better results: 30% RDG 60-70% aguarrás; 15% RDG 60-15% AMD 60-70% aguarrás, 30% UNTL L60-70% aguarrás, 15% UNTL L60-15% AMD 60-70% aguarrás. Since commercial natural gas is already processed, and therefore dehydrated, it was necessary to moister some sample prior to all assays. It was then allowed to cool down to 13ºC and interacted with wet 8-12 mesh 4A molecular sieve, thus enabling the generation of gas samples with water content (approximately 15000 ppm). The determination of the equilibrium curves was performed based on the dynamic method, which stagnated liquid phase and gas phase at a flow rate of 200 mL min-1. The hydrodynamic study was done with the aim of established the pressure drop and dynamic liquid hold-up. This investigation allowed are to set the working flow rates at 840 mL min-1 for the gas phase and 600 mLmin-1 for the liquid phase. The mass transfer study indicated that the system formed by UNTL L60- turpentine-natural gas the highest value of NUT

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the last decade, biological purification of gaseous waste has become an important alternative to many conventional methods of exhaust air treatment. More recently, biofiltration has proved to be an effective and inexpensive method for the treatment of air contaminated with volatile organic compounds (VOCs). A biofilter consists in a reactor packed with a porous solid bed material, where the microorganisms are fixed. During the biofiltration process, polluted air is transported through the biofilter medium where the contaminant is degraded. Within the biofilm, the pollutants in the waste gases are energy and carbon sources for microbial metabolism and are transformed into CO2, water and biomass. The bed material should be characterized by satisfactory mechanical and physical properties as structure, void fraction, specific area and flow resistance. The aim of this research was the biofilter construction and study of the biological degradation of ethanol and toluene, as well as the modeling of the process. Luffa cylindrica is a brazilian fiber that was used as the filtering material of the present work. The parameters and conditions studied were: composition of nutrients solution; effect of microflorae strains, namely Pseudomanas putida and Rhodococcus rhodochrous; waste gas composition; air flow rate; and inlet load of VOCs. The biofilter operated in diffusion regime and the best results for remotion capacity were obtained when a microorganisms consortion of Pseudomanas putida and Rhodococcus rhodochrous,were used, with a gas flow rate of 1 m3.h-1 and molar ratio nitrogene/phosphore N/P=2 in the nutrients solution. The maximum remotion capacity for ethanol was around 90 g.m-3.h-1 and 50 g.m-3.h-1 to toluene. It was proved that toluene has inhibitory effect on the ethanol remotion When the two VOCs were present in the same waste gas, there was a decrease of 40% in ethanol remotion capacity. Luffa cylindrica does not present considerable pressure drop. Ottengraf and van Lith models were used to represent the results obtained for ethanol and toluene, respectively. The application of the transient model indicated a satisfactory approximation between the experimental results obtained for ethanol and toluene vapors biofiltration and the ones predicted it

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A procedure for calculation of refrigerant mass flow rate is implemented in the distributed numerical model to simulate the flow in finned-tube coil dry-expansion evaporators, usually found in refrigeration and air-conditioning systems. Two-phase refrigerant flow inside the tubes is assumed to be one-dimensional, unsteady, and homogeneous. In themodel the effects of refrigerant pressure drop and the moisture condensation from the air flowing over the external surface of the tubes are considered. The results obtained are the distributions of refrigerant velocity, temperature and void fraction, tube-wall temperature, air temperature, and absolute humidity. The finite volume method is used to discretize the governing equations. Additionally, given the operation conditions and the geometric parameters, the model allows the calculation of the refrigerant mass flow rate. The value of mass flow rate is computed using the process of parameter estimation with the minimization method of Levenberg-Marquardt minimization. In order to validate the developed model, the obtained results using HFC-134a as a refrigerant are compared with available data from the literature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The pipe flow of a viscous-oil-gas-water mixture such as that involved in heavy oil production is a rather complex thereto-fluid dynamical problem. Considering the complexity of three-phase flow, it is of fundamental importance the introduction of a flow pattern classification tool to obtain useful information about the flow structure. Flow patterns are important because they indicate the degree of mixing during flow and the spatial distribution of phases. In particular, the pressure drop and temperature evolution along the pipe is highly dependent on the spatial configuration of the phases. In this work we investigate the three-phase water-assisted flow patterns, i.e. those configurations where water is injected in order to reduce friction caused by the viscous oil. Phase flow rates and pressure drop data from previous laboratory experiments in a horizontal pipe are used for flow pattern identification by means of the 'support vector machine' technique (SVM).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For the configuration optimization of plate heat exchangers (PHEs), the mathematical models for heat transfer and pressure drop must be valid for a wide range of operational conditions of all configurations of the exchanger or the design results may be compromised. In this investigation, the thermal model of a PHE is adjusted to fit experimental data obtained from non-Newtonian heat transfer for eight different configurations, using carboxymethylcellulose solutions (CMC) as test fluid. Although it is possible to successfully adjust the model parameters, Newtonian and non-Newtonian heat transfer cannot be represented by a single generalized correlation. In addition, the specific heat, thermal conductivity and power-law rheological parameters of CMC solutions were correlated with temperature, over a range compatible with a continuous pasteurization process.