1000 resultados para PREGNANT RATS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Prostate cancer is the second most common cancer diagnosed in men; however its etiology remains unknown. Previous studies have shown that environmental adverse factors, such as maternal nutritional status during pregnancy, can influence fetal development and predispose people to diseases in adult life. The feeding of low-protein diets to pregnant rats result in fetal growth disturbance, androgen/estrogen unbalance and changes in the expression and sensibility of hormone receptors in male offspring. These alterations can promote permanent changes in androgen dependent organs, such as in the prostate. In this sense, we hypothesized that the hormonal unbalance that occurs during aging can lead to an increase in the susceptibility to prostatic disorders. Aim: To evaluate our hypothesis, malnourished male rat offspring were submitted to simultaneous estrogen and testosterone exposure in adulthood, to drive lesions in the rat ventral prostate gland (VP). Methods: 17 week-old Wistar rats (n=48) that received in utero normal protein diet (NP group, AIN93G=17% protein) or low protein diet (RP group, AIN93G modified=6% protein) were given implants with 17β-estradiol plus testosterone administration (NPH and RPH groups) for 17 weeks. The animals were killed at the age of 34 weeks and the VP were excised, weighted and processed for histopathological, immunohistochemical (Ki67, AR, p63, e-caderin, laminin, c-myc and GSTP), biochemical and ultrastructural analysis. Results: Both absolute and relative VP weight from NPH animals were about 30% higher than RPH. Serological data showed that estradiol levels were similar in both groups, but testosterone levels were lower in the RPH male offspring. The steroid hormone exposure in adult life promoted prostate lesions in both RPH and NPH offspring associated with reactive stroma. VP from RPH group exhibited heightened susceptibility to prostatic intraepithelial neoplasia (mainly cribriform and signet ring-cell patterns) and increased the incidence and aggressiveness of prostatitis. In this group, a higher proportion of basal cells, increased proliferation index, lower expression ofthe androgen receptor and increased focus of collagenous micronodules closely associated to epithelial neoplasias were also observed. Conclusion:These observations suggest that maternal protein restriction alters adult prostate response to androgen/estrogen handling and increases susceptibility to prostate diseases. Ethical protocol:CEEA,476/2013 IBB-UNESP; Funding Support: 2009/50204-6 and 2013/09649-0.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this study was to investigate the effects of maternal lead poisoning during pregnancy on the development of the jaw (Meckel's cartilage) of rat fetuses by histologic and morphometric methods. Pregnant rats received a single intraperitoneal injection of 2.5 mg of lead acetate/100g body weight on the 10th day of pregnancy. Meckel's cartilage of fetuses of the lead-treated group showed smaller volume density and size of the lacunae, as well as modification of the lacunae shape. Moreover, the number density of lacunae and the volume density of the matrix increased significantly in the Meckel's cartilage in treated group fetuses. The results suggest that lead poisoning during the period of organogenesis can induce disturbances in the development and differentiation of the fetal stomatognathic system. Reducing the consumption of alcoholic beberages and smoking cessation by women in childbearing age, along with a strict policy of control of the environmental lead exposure can bring great benefits to the future generations of children.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The transition from gestation to lactation is characterized by a robust adaptation of maternal pancreatic beta-cells. Consistent with the loss of beta-cell mass, glucose-induced insulin secretion is down-regulated in the islets of early lactating dams. Extensive experimental evidence has demonstrated that the surge of prolactin is responsible for the morphofunctional remodeling of the maternal endocrine pancreas during pregnancy, but the precise molecular mechanisms by which this phenotype is rapidly reversed after delivery are not completely understood. This study investigated whether glucocorticoid-regulated expression of Rasd1/Dexras, a small inhibitoryGprotein, is involved in this physiological plasticity. Immunofluorescent staining demonstrated that Rasd1 is localized within pancreatic beta-cells. Rasd1 expression in insulin-secreting cells was increased by dexamethasone and decreased by prolactin. In vivo data confirmed that Rasd1 expression is decreased in islets from pregnant rats and increased in islets from lactating mothers. Knockdown of Rasd1 abolished the inhibitory effects of dexamethasone on insulin secretion and the protein kinase A, protein kinase C, and ERK1/2 pathways. Chromatin immunoprecipitation experiments revealed that glucocorticoid receptor (GR) and signal transducer and activator of transcription 5b (STAT5b) cooperatively mediate glucocorticoid-induced Rasd1 expression in islets. Prolactin inhibited the stimulatory effect of GR/STAT5b complex on Rasd1 transcription. Overall, our data indicate that the stimulation of Rasd1 expression by glucocorticoid at the end of pregnancy reverses the increased insulin secretion that occurs during pregnancy. Prolactin negatively regulates this pathway by inhibiting GR/STAT5b transcriptional activity on the Rasd1 gene. (Endocrinology 153: 3668-3678, 2012)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aims: An extensive variety of prenatal insults are associated with an increased incidence of metabolic and cardiovascular disorders in adult life. We previously demonstrated that maternal global nutrient restriction during pregnancy leads to increased blood pressure and endothelial dysfunction in the adult offspring. This study aimed to assess whether prenatal exposure to nutritional insult has transgenerational effects in F-2 and F-3 offspring. Main methods: For this, female Wistar rats were randomly divided into two groups on day 1 of pregnancy: a control group fed standard chow ad libitum and a restricted group fed 50% of the ad libitum intake throughout gestation. At delivery, all animals were fed a standard laboratory chow diet. At 11 weeks of age, one female and one male from each restricted litter were randomly selected and mated with rats from another restricted litters in order to generate the F-2 offspring. The same procedure produced F-3 generation. Similarly, the rats in the control group were bred for each generation. Key Findings: Our findings show that the deleterious effects of maternal nutrient restriction to which the F-0 mothers were exposed may not be limited to the male first generation. In fact, we found that elevated blood pressure, an impaired vasodilatory response to acetylcholine and alterations in NO production were all transferred to the subsequent males from F-2 and F-3 generations. Significance: Our data show that global nutrient restriction during pregnancy results in a specific phenotype that can be passed transgenerationally to a second and third generation. (c) 2012 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Emerging evidence suggests that in addition to being the 'power houses' of our cells, mitochondria facilitate effector responses of the immune system. Cell death and injury result in the release of mtDNA (mitochondrial DNA) that acts via TLR9 (Toll-like receptor 9), a pattern recognition receptor of the immune system which detects bacterial and viral DNA but not vertebrate DNA. The ability of mtDNA to activate TLR9 in a similar fashion to bacterial DNA stems from evolutionarily conserved similarities between bacteria and mitochondria. mtDNA may be the trigger of systemic inflammation in pathologies associated with abnormal cell death. PE (pre-eclampsia) is a hypertensive disorder of pregnancy with devastating maternal and fetal consequences. The aetiology of PE is unknown and removal of the placenta is the only effective cure. Placentas from women with PE show exaggerated necrosis of trophoblast cells, and circulating levels of mtDNA are higher in pregnancies with PE. Accordingly, we propose the hypothesis that exaggerated necrosis of trophoblast cells results in the release of mtDNA, which stimulates TLR9 to mount an immune response and to produce systemic maternal inflammation and vascular dysfunction that lead to hypertension and IUGR (intra-uterine growth restriction). The proposed hypothesis implicates mtDNA in the development of PE via activation of the immune system and may have important preventative and therapeutic implications, because circulating mtDNA may be potential markers of early detection of PE, and anti-TLR9 treatments may be promising in the management of the disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: To evaluate the effects at term of a highly active antiretroviral drug association when administered for the whole period of rat pregnancy. Methods: Forty pregnant rats weighing about 200 g were randomly divided into four groups: a control group (Ctr = drug vehicle control, n = 10) and three experimental groups. which were treated with an oral solution of zidovudine-stavudine (Exp1x = 10/1 mg/kg b.w., n = 10; Exp3x = 30/3 mg/kg b.w., n = 10; Exp9x = 90/9 mg/kg b.w., n = 10) from "day 0" up to the 20th day of pregnancy. Maternal body weights were recorded at the start of the experiment and on the 7th, 14th and 20th day thereafter. At term (20th day) the rats were anesthetized and submitted to hysterotomy. Implantations, reabsorptions, living fetuses, placentae and intrauterine deaths were looked for and recorded. The collected fetuses and placentae were weighed and the concepts were examined by a stereoscopic microscope looking for external malformations. Results: No significant alterations due to the antiretroviral drug treatment could be detected regarding the number of implantations, fetuses, placentae, absorptions and malformations nor regarding maternal and fetal mortality. Conclusions: Administration of the association zidovudine/stavudine for the whole period of rat pregnancy did not interfere with the maternal, fetal and placental weight gain as well as abnormalities detectable by the employed methodology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The colocalization, number, and size of various classes of enteric neurons immunoreactive (IR) for the purinergic P2X2 and P2X7 receptors (P2X2R, P2X7R) were analyzed in the myenteric and submucosal plexuses of control, undernourished, and re-fed rats. Pregnant rats were exposed to undernourishment (protein-deprivation) or fed a control diet, and their offspring comprised the following experimental groups: rats exposed to a normal diet throughout gestation until postnatal day (P)42, rats protein-deprived throughout gestation and until P42, and rats protein-deprived throughout gestation until P21 and then given a normal diet until P42. Immunohistochemistry was performed on the myenteric and submucosal plexuses to evaluate immunoreactivity for P2X2R, P2X7R, nitric oxide synthase (NOS), choline acetyltransferase (ChAT), calbindin, and calretinin. Double-immunohistochemistry of the myenteric and submucosal plexuses demonstrated that 100% of NOS-IR, calbindin-IR, calretinin-IR, and ChAT-IR neurons in all groups also expressed P2X2R and P2X7R. Neuronal density increased in the myenteric and submucosal plexuses of undernourished rats compared with controls. The average size (profile area) of some types of neurons in the myenteric and submucosal plexuses was smaller in the undernourished than in the control animals. These changes appeared to be reversible, as animals initially undernourished but then fed a normal diet at P21 (re-feeding) were similar to controls. Thus, P2X2R and P2X7R are present in NOS-positive inhibitory neurons, calbindin- and calretinin-positive intrinsic primary afferent neurons, cholinergic secretomotor neurons, and vasomotor neurons in rats. Alterations in these neurons during undernourishment are reversible following re-feeding

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We hypothesized that feeding pregnant rats with a high-fat diet would increase both circulating 17β-estradiol (E2) levels in the dams and the risk of developing carcinogen-induced mammary tumors among their female offspring. Pregnant rats were fed isocaloric diets containing 12% or 16% (low fat) or 43% or 46% (high fat) of calories from corn oil, which primarily contains the n − 6 polyunsaturated fatty acid (PUFA) linoleic acid, throughout pregnancy. The plasma concentrations of E2 were significantly higher in pregnant females fed a high n − 6 PUFA diet. The female offspring of these rats were fed with a laboratory chow from birth onward, and when exposed to 7,12-dimethylbenz(a)anthracene had a significantly higher mammary tumor incidence (60% vs. 30%) and shorter latency for tumor appearance (11.4 ± 0.5 weeks vs. 14.2 ± 0.6 weeks) than the offspring of the low-fat mothers. The high-fat offspring also had puberty onset at a younger age, and their mammary glands contained significantly higher numbers of the epithelial structures that are the targets for malignant transformation. Comparable changes in puberty onset, mammary gland morphology, and tumor incidence were observed in the offspring of rats treated daily with 20 ng of E2 during pregnancy. These data, if extrapolated to humans, may explain the link among diet, early puberty onset, mammary parenchymal patterns, and breast cancer risk, and indicate that an in utero exposure to a diet high in n − 6 PUFA and/or estrogenic stimuli may be critical for affecting breast cancer risk.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The relation between changes in brain and plasma concentrations of neurosteroids and the function and structure of γ-aminobutyric acid type A (GABAA) receptors in the brain during pregnancy and after delivery was investigated in rats. In contrast with plasma, where all steroids increased in parallel, the kinetics of changes in the cerebrocortical concentrations of progesterone, allopregnanolone (AP), and allotetrahydrodeoxycorticosterone (THDOC) diverged during pregnancy. Progesterone was already maximally increased between days 10 and 15, whereas AP and allotetrahydrodeoxycorticosterone peaked around day 19. The stimulatory effect of muscimol on 36Cl− uptake by cerebrocortical membrane vesicles was decreased on days 15 and 19 of pregnancy and increased 2 days after delivery. Moreover, the expression in cerebral cortex and hippocampus of the mRNA encoding for γ2L GABAA receptor subunit decreased during pregnancy and had returned to control values 2 days after delivery. Also α1,α2, α3, α4, β1, β2, β3, and γ2S mRNAs were measured and failed to change during pregnancy. Subchronic administration of finasteride, a 5α-reductase inhibitor, to pregnant rats reduced the concentrations of AP more in brain than in plasma as well as prevented the decreases in both the stimulatory effect of muscimol on 36Cl− uptake and the decrease of γ2L mRNA observed during pregnancy. These results indicate that the plasticity of GABAA receptors during pregnancy and after delivery is functionally related to fluctuations in endogenous brain concentrations of AP whose rate of synthesis/metabolism appears to differ in the brain, compared with plasma, in pregnant rats.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hyperthermia is teratogenic to human and animal embryos and induces mainly anomalies of the nervous system. However, the teratogenic mechanism is poorly understood. Mammalian embryos are known to switch from anaerobic to aerobic metabolism around the time of neural tube closure. This critical event might be sensitive to hyperthermia. The objective of the present study was to evaluate the ultrastructural changes of the mitochondria of the neuroepithelium (NE) of rat embryos following maternal exposure to hyperthermia. Pregnant rats were heat stressed for an hour on gestation day (GD) 9 and embryos were examined by electron microscopy on GD 10. NE presented extensive apoptosis. Intercellular junctions were weakened and copious cellular debris projected into the ventricle. The mitochondria were of diverse size and shape. Most of them were swollen and had short cristae and electron dense matrix. Hydropic changes were also observed in numerous mitochondria. Lipid-laden mitochondria were found in the apical portions of neuroblasts. The mesenchyme (ME) of heat-treated embryos showed paucity of cells and only as frequent apoptosis as the controls. Their mitochondria also showed changes similar to those of the NE. Additionally extensive lipid accumulation was observed in and in the vicinity of mitochondria, often surrounded by short strands of endoplasmic reticulum. Whereas mitochondrial pathology was associated with profound apoptosis in the NE, growth restriction and lipid accumulation accompanied mitochondrial changes in the ME. The results of this study indicate that the embryonic response to maternal heat shock is tissue-specific and morphologically distinct in this species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Preeclampsia is characterized clinically by hypertension and proteinuria. Soluble Flt-1 (sFlt-1; also known as soluble vascular endothelial growth factor receptor-1 [VEGFR-1]) and soluble endoglin (sEng) are elevated in preeclampsia, and their administration to pregnant rats elicits preeclampsia-like symptoms. Heme oxygenase-1 (HO-1) and its metabolite carbon monoxide (CO) exert protective effects against oxidative stimuli. Thus, we hypothesized that HO-1 upregulation may offer protection against preeclampsia by inhibiting sFlt-1 and sEng release.