326 resultados para PREECLAMPSIA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background-The exact etiology of preeclampsia is unknown, but there is growing evidence of an imbalance in angiogenic growth factors and abnormal placentation. Hydrogen sulfide (H2S), a gaseous messenger produced mainly by cystathionine γ-lyase (CSE), is a proangiogenic vasodilator. We hypothesized that a reduction in CSE activity may alter the angiogenic balance in pregnancy and induce abnormal placentation and maternal hypertension. Methods and Results-Plasma levels of H2S were significantly decreased in women with preeclampsia (P<0.01), which was associated with reduced placental CSE expression as determined by real-time polymerase chain reaction and immunohistochemistry. Inhibition of CSE activity by DL-propargylglycine reduced placental growth factorproduction from first-trimester (8-12 weeks gestation) human placental explants and inhibited trophoblast invasion in vitro. Knockdown of CSE in human umbilical vein endothelial cells by small-interfering RNA increased the release of soluble fms-like tyrosine kinase-1 and soluble endoglin, as assessed by enzyme-linked immunosorbent assay, whereas adenoviral-mediated CSE overexpression in human umbilical vein endothelial cells inhibited their release. Administration of DL-propargylglycine to pregnant mice induced hypertension and liver damage, promoted abnormal labyrinth vascularization in the placenta, and decreased fetal growth. Finally, a slow-releasing H2S-generating compound, GYY4137, inhibited circulating soluble fms-like tyrosine kinase-1 and soluble endoglin levels and restored fetal growth in mice that was compromised by DL-propargylglycine treatment, demonstrating that the effect of CSE inhibitor was attributable to inhibition of H2S production. Conclusions-These results imply that endogenous H2S is required for healthy placental vasculature and that a decrease in CSE/H2S activity may contribute to the pathogenesis of preeclampsia. © 2013 American Heart Association, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Preeclampsia is an inflammatory disorder in which serum levels of vascular endothelial growth factor (VEGF) and its soluble receptor-1 (sVEGFR-1, also known as sFlt-1) are elevated. We hypothesize that VEGF and placenta growth factor (PlGF) are dysregulated in preeclampsia due to high levels of sVEGFR-1, which leads to impaired placental angiogenesis. Analysis of supernatants taken from preeclamptic placental villous explants showed a four-fold increase in sVEGFR-1 than normal pregnancies, suggesting that villous explants in vitro retain a hypoxia memory reflecting long-term fetal programming. The relative ratios of VEGF to sVEGFR-1and PlGF to sVEGFR-1 released from explants decreased by 53% and 70%, respectively, in preeclampsia compared with normal pregnancies. Exposure of normal villous explants to hypoxia increased sVEGFR-1 release compared with tissue normoxia (P<0.001), as did stimulation with tumor necrosis factor-α (P<0.01). Conditioned medium (CM) from normal villous explants induced endothelial cell migration and in vitro tube formation, which were both attenuated by pre-incubation with exogenous sVEGFR-1 (P<0.001). In contrast, endothelial cells treated with preeclamptic CM showed substantially reduced angiogenesis compared withnormal CM (P<0.001), which was not further decreased by the addition of exogenous sVEGFR-1, indicating a saturation of the soluble receptor.Removal of sVEGFR-1 by immunoprecipitation from preeclamptic CM significantly restored migration (P<0.001) and tube formation (P<0.001) to levels comparable to that induced by normal CM, demonstrating that elevated levels of sVEGFR-1 in preeclampsia are responsible for inhibiting angiogenesis. Our finding demonstrates the dysregulation of the VEGF/PlGF axis in preeclampsiaand offers an entirely new therapeutic approach to its treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Preeclampsia is a hypertensive disorder of pregnancy caused by abnormal placental function, partly because of chronic hypoxia at the utero-placental junction. The increase in levels of soluble vascular endothelial growth factor receptor 1, an antiangiogenic agent known to inhibit placental vascularization, is an important cellular factor implicated in the onset of preeclampsia. We investigated the ligand urotensin II (U-II), a potent endogenous vasoconstrictor and proangiogenic agent, for which levels have been reported to increase in patients with preeclampsia. We hypothesized that an increased sensitivity to U-II in preeclampsia might be achieved by upregulation of placental U-II receptors. We further investigated the role of U-II receptor stimulation on soluble vascular endothelial growth factor receptor 1 release in placental explants from diseased and normal patients. Immunohistochemistry, real-time PCR, and Western blotting analysis revealed that U-II receptor expression was significantly upregulated in preeclampsia placentas compared with controls (P<0.01). Cellular models of syncytiotrophoblast and vascular endothelial cells subjected to hypoxic conditions revealed an increase in U-II receptor levels in the syncytiotrophoblast model. This induction is regulated by the transcriptional activator hypoxia-inducible factor 1a. U-II treatment is associated with increased secretion of soluble vascular endothelial growth factor receptor 1 only in preeclamptic placental explants under hypoxia but not in control conditions. Interestingly, normal placental explants did not respond to U-II stimulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Preeclampsia is a pregnancy-specific hypertensive syndrome that causes substantial maternal and fetal morbidity and mortality. Recent evidence indicates that maternal endothelial dysfunction in preeclampsia results from increased soluble Fms-like tyrosine kinase-1 (sFlt-1), a circulating antiangiogenic protein. Factors responsible for excessive production of sFlt-1 in preeclampsia have not been identified. We tested the hypothesis that angiotensin II type 1 (AT1) receptor activating autoantibodies, which occur in women with preeclampsia, contribute to increased production of sFlt-1. IgG from women with preeclampsia stimulates the synthesis and secretion of sFlt-1 via AT1 receptor activation in pregnant mice, human placental villous explants, and human trophoblast cells. Using FK506 or short-interfering RNA targeted to the calcineurin catalytic subunit mRNA, we determined that calcineurin/nuclear factor of activated T-cells signaling functions downstream of the AT1 receptor to induce sFlt-1 synthesis and secretion by AT1-receptor activating autoantibodies. AT1-receptor activating autoantibody–induced sFlt-1 secretion resulted in inhibition of endothelial cell migration and capillary tube formation in vitro. Overall, our studies demonstrate that an autoantibody from women with preeclampsia induces sFlt-1 production via angiotensin receptor activation and downstream calcineurin/nuclear factor of activated T-cells signaling. These autoantibodies represent potentially important targets for diagnosis and therapeutic intervention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The incidence of preeclampsia is reduced by a third in smokers, but not in snuff users. Soluble Flt-1 (sFlt-1) and soluble endoglin (sEng) are increased prior to the clinical onset of preeclampsia. Animals exposed to high circulating levels of sFlt-1 and sEng elicit severe preeclampsia-like symptoms. Smokers have reduced circulating sFlt-1 and cigarette smoke extract decreases sFlt-1 release from placental villous explants. An anti-inflammatory enzyme, heme oxygenase-1 (HO-1) and its metabolite carbon monoxide (CO), inhibit sFlt-1 and sEng release. Women with preeclampsia exhale less CO than women with normal pregnancies and HO expression decreases as the severity of preeclampsia increases. In contrast, sFlt-1 levels increase with increasing severity. More importantly, chorionic villous sampling from women at eleven weeks gestation shows that HO-1 mRNA expression is decreased in women who go on to develop preeclampsia. Collectively, these facts provide compelling evidence to support the proposition that the pathogenesis of preeclampsia is largely due to loss of HO activity. This results in an increase in inflammation and excessive elevation of the two key anti-angiogenic factors responsible for the clinical signs of preeclampsia. These findings provide strong evidence for a protective role of HO-1 in pregnancy and identify HO as a target for the treatment of preeclampsia. The cardiovascular drugs, statins, stimulate HO-1 expression and inhibit sFlt-1 release in vivo and in vitro, thus, they have the potential to ameliorate early onset preeclampsia. The StAmP trial is underway to address this and if positive, its outcome will lead to the very first therapeutic intervention to prolong affected pregnancies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The exact aetiology of preeclampsia is unknown, but there is a good association with an imbalance in angiogenic growth factors and abnormal placentation [1]. Hydrogen sulphide (H2S), a gaseous messenger produced mainly by cystathionine γ-lyase (CSE), is pro-angiogenic vasodilator [2] and [3]. We hypothesized that a reduction in CSE activity may alter the angiogenic balance in pregnancy and induce abnormal placentation and maternal hypertension. Plasma levels of H2S were significantly decreased in preeclamptic women (p < 0.01), which was associated with reduced CSE message and protein expression in human placenta as determined by real-time PCR and immunohistochemistry. Inhibition of CSE activity by DL-propargylglycine (PAG) in first trimester (8–12 weeks gestation) human placental explants had reduced placenta growth factor (PlGF) production as assessed by ELISA and inhibited trophoblast invasion in vitro. Endothelial CSE knockdown by siRNA transfection increased the endogenous release of soluble fms-Like tyrosine kinase-1 (sFlt-1) and soluble endoglin, (sEng) from human umbilical vein endothelial cells while adenoviral-mediated CSE overexpression inhibited their release. Administration of PAG to pregnant mice induced hypertension, liver damage, and promoted abnormal labyrinth vascularisation in the placenta and decreased fetal growth. Finally, a slow releasing, H2S-generating compound, GYY4137, inhibited circulating sFlt-1 and sEng levels and restored fetal growth that was compromised by PAG-treatment demonstrating that the effect of CSE inhibitor was due to inhibition of H2S production. These results imply that endogenous H2S is required for healthy placental vasculature and a decrease in of CSE/H2S activity may contribute to the pathogenesis of preeclampsia. References [1] S. Ahmad, A. Ahmed, Elevated placental soluble vascular endothelial growth factor receptor-1 inhibits angiogenesis in preeclampsia, Circ Res., 95 (2004), pp. 884–891. [2] G. Yang, et al., H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase, Science, 322 (2008), pp. 587–590. [3] A. Papapetropoulos, et al., Hydrogen sulfide is an endogenous stimulator of angiogenesis, Proc Natl Acad Sci USA, 106 (2009), pp. 21972–21977.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Placenta growth factor (PlGF) deficient mice are fertile at a Mendelian ratio. Interestingly, low maternal plasma levels of PlGF are strongly associated with early onset of preeclampsia, a pregnancy hypertensive disorder characterised by high blood pressure, proteinuria and fetal growth restriction. PlGF is increasingly being recognised as an early diagnostic biomarker, but the physiological importance of PlGF in the pathogenesis of preeclampsia is unknown. We investigated whether the decreased levels of PlGF in pregnancy exacerbate the fetal growth restriction associated with preeclampsia in the presence of high sFlt-1 and the potential of hydrogen sulphide to ameliorate these effects. Pregnant PlGF−/− mice were injected with adenovirus encoding sFlt-1 (Ad-sFlt-1) at 1 × 109 pfu/ml at E10.5 and mean arterial blood pressure (MAP), biochemical and histological analysis of maternal kidney, placenta and embryos were assessed at the end of pregnancy. Ad-sFlt-1 significantly increased MAP and induced severe glomerular endotheliosis in PlGF−/− mice compared to wild-type animals. Soluble Flt-1 also significantly elevated albumin–creatinine ratio and increased levels of urinary kidney injury molecule-1, a marker for proximal tubule injury. Furthermore, sFlt-1 over expression increased fetal resorption rate in the PlGF−/− mice and promoted abnormal placental vascularisation. To determine whether placental PlGF is critical for preventing fetal growth restriction associated with preeclampsia, we generated haploinsufficient PlGF+/− placentas and embryos in dams and exposed to high sFlt-1 environment. These mothers showed reduced fetal resorption, gestational hypertension and proteinuria when compared to pregnant PlGF−/− mice. Furthermore, treatment with hydrogen sulphide-releasing agent, GYY4137, significantly reduced resorption, hypertension and proteinuria observed in Ad-sFlt-1 treated pregnant PlGF−/− mice. Our study shows that placental PlGF is a critical protective factor against the damaging effects of high sFlt-1 associated with preeclampsia and activation of the hydrogen sulphide pathway may rescue preeclampsia phenotypes even under low PlGF environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Life's perfect partnership starts with the placenta. If we get this right, we have the best chance of healthy life. In preeclampsia, we have a failing placenta. Preeclampsia kills one pregnant woman every minute and the life expectancy of those who survive is greatly reduced. Preeclampsia is treated roughly the same way it was when Thomas Edison was making the first silent movie. Globally, millions of women risk death to give birth each year and almost 300,000 lose their lives in this process. Over half a million babies around the world die each year as a consequence of preeclampsia. Despite decades of research, we lack pharmacological agents to treat it. Maternal endothelial dysfunction is a central phenomenon responsible for the clinical signs of preeclampsia. In the late nineties, we discovered that vascular endothelial growth factor (VEGF) stimulated nitric oxide release. This led us to suggest that preeclampsia arises due to the loss of VEGF activity, possibly due to a rise in soluble Flt-1 (sFlt-1), the natural antagonist of VEGF. Researchers have shown that high sFlt-1 elicits preeclampsia-like signs in pregnant rats and sFlt-1 increases before the clinical signs of preeclampsia in pregnant women. We demonstrated that removing or reducing this culprit protein from preeclamptic placenta restored the angiogenic balance. Heme oxygenase-1 (HO-1 or Hmox1) that generates carbon monoxide (CO), biliverdin (rapidly converted to bilirubin) and iron is cytoprotective. We showed that the Hmox1/CO pathway prevents human placental injury caused by pro-inflammatory cytokines and suppresses sFlt-1 and soluble endoglin release, factors responsible for preeclampsia phenotypes. The other key enzyme we identified is the hydrogen sulfide generating cystathionine-gamma-lyase (CSE or Cth). These are the only two enzyme systems shown to suppress sFlt-1 and to act as protective pathways against preeclampsia phenotypes in animal models. We also showed that when hydrogen sulfide restores placental vasculature, it also improves lagging fetal growth. These molecules act as the inhibitor systems in pregnancy and when they fail, this triggers preeclampsia. Discovering that statins induce these enzymes led us to an RCT to develop a low-cost therapy (StAmP Trial) to prevent or treat preeclampsia. If you think of pregnancy as a car then preeclampsia is an accelerator–brake defect disorder. Inflammation, oxidative stress and an imbalance in the angiogenic milieu fuel the ‘accelerator’. It is the failure in the braking systems (the endogenous protective pathway) that results in the ‘accelerator’ going out of control until the system crashes, manifesting itself as preeclampsia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Low circulating levels of placenta growth factor (PlGF) is strongly associated with the onset of preeclampsia, a maternal hypertensive disorder characterized by high blood pressure and proteinuria after 20 weeks of gestation. Although, PlGF-deficient mice are born healthy and fertile at a Mendelian ratio, the physiological importance of PlGF in the pathogenesis of preeclampsia is unclear. We hypothesised that decreased levels of PlGF in pregnancy exacerbates the fetal growth restriction associated with preeclampsia in the presence of high sFlt-1. METHODS: Pregnant PlGF-/- mice were injected with adenovirus encoding sFlt-1 (Ad-sFlt-1) at high (i) 1.5x109 pfu/ml and low (ii) 0.5x109 pfu/ml doses. Mean arterial blood pressure (MBP), biochemical and histological assessments of maternal kidney, placenta and embryos were performed. RESULTS: Ad-sFlt-1 significantly increased MBP and induced severe glomerular endotheliosis in PlGF-/- mice at E10.5 gestation compared to wild-type animals. High sFlt-1 also significantly elevated albumincreatinine ratio and increased levels of urinary kidney injury molecule-1, a marker for proximal tubule injury.At a high dose of sFlt-1, there was complete fetal resorption in the pregnant PlGF-/- mice, and even the lower dose of sFlt-1 induced severe fetal resorption and abnormal placental vascularization. Hydrogen sulphide-releasing agent, GYY4137, significantly reduced resorption, hypertension and proteinuria in Ad-sFlt-1 treated pregnant PlGF-/- mice. To determine if placental PlGF is critical for preventing fetal growth restriction associated with preeclampsia, we generated haploinsufficient PlGF+/- placentas and embryos were generated in wild-time dams and exposed to high sFlt-1 environment. This resulted in reduced fetal resorption, gestational hypertension and proteinuria when compared to pregnant PlGF-/- mice. CONCLUSIONS: Placental PlGF is a critical protective factor against the damaging effects of high sFlt-1 in preeclampsia and the hydrogen sulphide pathway may rescue preeclampsia phenotypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Preeclampsia is a vascular disorder in pregnancyand is biochemical characterization by high soluble Flt-1 and lowplacenta growth factor as well as an imbalance in redox homeostasis.During conditions of high oxidative stress, cysteine residues on keyproteins are reversibly altered by S-glutathionylation, modifying theirfunction. Glutaredoxin-1 (Glrx) enzymatically catalyzes the removal of S-glutathione adducts, conferring reversible signaling dynamics toproteins with redox-sensitive cysteines. The role of Glrx in preeclampsiais unknown.METHODS: Immunohistochemistry and Western blot analysis for Glrx orglutathione were conducted on human placenta samples collected pre-termfrom early onset preeclamptic patients (n=10) or non-preeclamptic induceddeliveries (n=9). Human endothelial cells were infected with adenovirusencoding Glrx or LacZ prior to the cells being exposed to hypoxia (0.1%O2, 24h) to measure changes in soluble Flt-1 (sFlt-1). Quantitative PCRand ELISA were used to measure sFlt-1 at mRNA and protein level.RESULTS: Immunohistochemical staining for GSH revealed lowerS-glutathionylation adducts in preeclampsia placenta in comparison tocontrols. Glrx expression, which catalyses de-glutathionylation wasenhanced in early onset preeclampsia compared to pre-term controlsamples. In contrast, no change was observed in preeclamptic and IUGRplacentas at full term. In endothelial cells overexpressing Glrx, sFlt-1expression was dramatically enhanced at mRNA (3-fold P<0.05) andprotein level (5 fold P>0.01, n=4) after hypoxia andoverexpressing Glrxin mice enhanced levels of circulating sFlt-1 during in vivo ischemia.CONCLUSIONS: Enhanced Glrx expression in preeclamptic placentain line with an apparent decrease in S-glutathionylation may leavekey proteins susceptible to irreversible oxidation in conditions of highoxidative stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aberrant placentation generating placental oxidative stress is proposed to play a critical role in the pathophysiology of preeclampsia. Unfortunately, therapeutic trials of antioxidants have been uniformly disappointing. There is provisional evidence implicating mitochondrial dysfunction as a source of oxidative stress in preeclampsia. Here we provide evidence that mitochondrial reactive oxygen species mediates endothelial dysfunction and establish that directly targeting mitochondrial scavenging may provide a protective role. Human umbilical vein endothelial cells exposed to 3% plasma from women with pregnancies complicated by preeclampsia resulted in a significant decrease in mitochondrial function with a subsequent significant increase in mitochondrial superoxide generation compared to cells exposed to plasma from women with uncomplicated pregnancies. Real-time PCR analysis showed increased expression of inflammatory markers TNF-α, TLR-9 and ICAM-1 respectively in endothelial cells treated with preeclampsia plasma. MitoTempo is a mitochondrial-targeted antioxidant, pre-treatment of cells with MitoTempo protected against hydrogen peroxide-induced cell death. Furthermore MitoTempo significantly reduced mitochondrial superoxide production in cells exposed to preeclampsia plasma by normalising mitochondrial metabolism. MitoTempo significantly altered the inflammatory profile of plasma treated cells. These novel data support a functional role for mitochondrial redox signaling in modulating the pathogenesis of preeclampsia and identifies mitochondrial-targeted antioxidants as potential therapeutic candidates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Preeclampsia (PE) is a pregnancy complication that is new-onset of hypertension and proteinuria after 20 weeks of gestation. However, subclinical renal dysfunction may be apparent earlier in gestation prior to the clinical presentation of PE. Although the maternal syndrome of PE resolves early postpartum, women with a history of PE are at higher risk of renal dysfunction later in life. Mineral metabolism, such as phosphate balance is heavily dependent on renal function, yet, phosphate handling in women with a history of PE is largely unknown. To investigate whether women with a history of PE would exhibit changes in phosphate metabolism compared to healthy parous women, phosphate loading test was used. Women with or without a history of PE, who were 6 months to 5 years postpartum, were recruited for this study. Blood and urine samples were collected before and after the oral dosing of 500mg phosphate solution. Biochemical markers of phosphate metabolism and renal function were evaluated. In order to assess the difference in renal function alteration between first trimester women who were or were not destined to develop PE, plasma cystatin C concentration was analysed. After phosphate loading, women with a history of PE had significantly elevated serum phosphate at both 1- and 2-hour, while controls had higher urine phosphate:urine creatinine excretion ratio at 1-hour than women with a history of PE. Women with a history of PE had no changes in intact parathyroid hormone (iPTH) concentration throughout the study period, whereas controls had elevated iPTH at 1-hour from baseline. In terms of renal function in the first trimester, there was no difference in plasma cystatin C concentration between women who were or were not destined to develop PE. The elevation of serum phosphate in women with a history of PE could be due to the delay in phosphate excretion. Prolong elevation of serum phosphate can have serious consequences later in life. Thus, oral phosphate challenge may serve as a useful method of early screening for altered phosphate metabolism and renal function.