919 resultados para PORTLAND-CEMENT


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the present paper, changes in mechanical properties of Portland cement-based mortars due to the addition of carbon nanotubes (CNT) and corrosion of embedded steel rebars in CNT cement pastes are reported. Bending strength, compression strength, porosity and density of mortars were determined and related to the CNT dosages. CNT cement paste specimens were exposed to carbonation and chloride attacks, and results on steel corrosion rate tests were related to CNT dosages. The increase in CNT content implies no significant variations of mechanical properties but higher steel corrosion intensities were observed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Today, the use of micropiles for different applications has become very common. In Spain, the cement grouts for micropiles are prepared using ordinary Portland cement and w:c ratio 0.5, although the micropiles standards do not restrict the cement type to use, provided that it reaches a certain compressive strength. In this study, the influence of using slag cement on the microstructure and durability related properties of cement grouts for micropiles have been studied until 90 hardening days, compared to an ordinary Portland cement. Finally, slag cement grouts showed good service properties, better than ordinary Portland cement ones.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this work, the microstructure of mortars made with an ordinary Portland cement and slag cement has been studied. These mortars were exposed to four different constant temperature and relative humidity environments during a 180-day period. The microstructure has been studied using impedance spectroscopy, and mercury intrusion porosimetry as a contrast technique. The impedance spectroscopy parameters make it possible to analyze the evolution of the solid fraction formation for the studied mortars and their results are confirmed with those obtained using mercury intrusion porosimetry. The development of the pore network of mortars is affected by the environment. However, slag cement mortars are more influenced by temperature while the relative humidity has a greater influence on the OPC mortars. The results show that slag cement mortars hardened under non-optimal environments have a more refined microstructure than OPC mortars for the studied environmental conditions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effect of 10% and 20% replacement metakaolin on a number of aspects of hydration chemistry and service performance of ordinary Portland cement pastes has been investigated. The analysis of expressed pore solutions has revealed that metakaolin-blended specimen pastes possess enhanced chloride binding capacities and reduced pore solution pH values when compared with their unblended counterparts. The implications of the observed changes in pore solution chemistry with respect to chloride induced reinforcement corrosion and the reduction in expansion associated with the alkali aggregate reaction are discussed. Differential thermal analysis, mercury intrusion porosimetry, and nuclear magnetic resonance spectroscopy have been employed in the analysis of the solid phase. It is suggested that hydrated gehlenite (a product of pozzolanic reaction) is operative in the removal and solid state binding of chloride ions from the pore solution of metakaolin-blended pastes. Diffusion coefficients obtained in a non-steady state chloride ion diffusion investigation have indicated that cement pastes containing 10% and 20% replacement metakaolin exhibit superior resistance to the penetration of chloride ions in comparison with those of plain OPC of the same water:cement ratio. The chloride induced corrosion behaviour of cement paste samples, of water:cement ratio 0.4, containing 0% , 10%, and 20% replacement metakaolin, has been monitored using the linear polarization technique. No significant corrosion of embedded mild steel was observed over a 200 day period.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The generation of industrial wastes has been increased more and more in recent decades, motivating studies about a correct sustainable allocation and that also represents advantages for their generators. In this context, are included two companies of cleaning products niche, located in São José do Mipibu/RN, that produces industrial sludge at a sewage treatment plant, and that is the main approach of this research. Given this, it was studied the incorporation potentiality of this sludge as a mineral addition in cement matrix for concrete production due it high capacity of wastes immobilization inside this material, which are subsequently used in the company for making precast articles. Were added different sludge concentrations (5, 10, 15 and 20%) in a common trait (1: 2: 3), and evaluated their techniques and microstructural implications via workability test in fresh state and compressive strength, full porosity and scanning electron microscopy (SEM) in the hardened state. The results demonstrated the feasibility of the process both from a technical and environmental view as economical. All concretes produced with residue showed an increase of workability given the nature of the waste that had surfactants substances capable of adsorbing tiny particles of air into the batter. However, for all concentrations were obtained lower compressive resistances than standard concrete, with a reduction of 39% for samples with 20% of sludge. This are attributed mainly to an increase of porosity in the transition zone of these material, resulting from increased formation of ettringite at the detriment to the formation of other compounds, but which still allows the use of these for the manufacture of concrete articles with non-structural nature, such as precast floor. In addition, the water absorption and void ratio increased slightly for all samples, except the concrete with 20% of waste that has a reduction for the last parameter. Given this context, the recommended maximum level is 20%, constituting a significant proportion and able to allocate sustainably all waste generated in the industry.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this work it is assessed the performance of Portland cement-based mortar to the grouting of type II ceramic plates with the addition of unusable tire rubber powder. It is presented a bibliographical review about the subject in which is done the theoretical and methodological foundation of the whole investigative process. The analyzed universe comprises a sample of mortar to the grouting of conventional ceramic plates type II (reference sample) and five more samples to the grouting of ceramic plates type II, which were made up of the addition of unusable tire rubber powder in the respective proportion (in mass) of 4%, 8%, 12%, 16% and 20%. These mortar samples were subject to the trials of determination of the consistency index (Brazilian Standard NBR 13276:2005), water retention ( Brazilian Standard NBR 14992 Attachment B:2003), permeability in 240 minutes (Brazilian Standard NBR 14992 Attachment G:2003), absorption of water by immersion (Brazilian Standard NBR 9781:2013), resistance to compression (Brazilian Standard NBR14992 Attachment D: 2003), resistance to traction in the flexion (Brazilian Standard NBR 13279:2005), resistance of traction adherence (Brazilian Standard NBR 14081 part 4:2012) and hardened mass density (Brazilian Standard NBR 13280: 2005). It has been found out from the analyzes of the results in the trial the following situation: the reference mortar used met the established requirements in the norms of specifications corresponding to only six from the eight parameters assessed in the research; the mortar with addition of 4,0% of tire rubber powder met the established requirements corresponding to only the resistance to compression and the resistance of adherence to traction. Thus, the other kinds of mortar with addition of 8,0 %, 12,0 %, 16,0 % and 20,0 % of tire rubber powder met the requirements of specifications corresponding to only the resistance to compression and the resistance of adherence to traction. This result concludes that the adding of tire rubber powder does not grant improvement to the mortar of type II grouting to the laying of ceramic plates.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this work it is assessed the performance of Portland cement-based mortar to the grouting of type II ceramic plates with the addition of unusable tire rubber powder. It is presented a bibliographical review about the subject in which is done the theoretical and methodological foundation of the whole investigative process. The analyzed universe comprises a sample of mortar to the grouting of conventional ceramic plates type II (reference sample) and five more samples to the grouting of ceramic plates type II, which were made up of the addition of unusable tire rubber powder in the respective proportion (in mass) of 4%, 8%, 12%, 16% and 20%. These mortar samples were subject to the trials of determination of the consistency index (Brazilian Standard NBR 13276:2005), water retention ( Brazilian Standard NBR 14992 Attachment B:2003), permeability in 240 minutes (Brazilian Standard NBR 14992 Attachment G:2003), absorption of water by immersion (Brazilian Standard NBR 9781:2013), resistance to compression (Brazilian Standard NBR14992 Attachment D: 2003), resistance to traction in the flexion (Brazilian Standard NBR 13279:2005), resistance of traction adherence (Brazilian Standard NBR 14081 part 4:2012) and hardened mass density (Brazilian Standard NBR 13280: 2005). It has been found out from the analyzes of the results in the trial the following situation: the reference mortar used met the established requirements in the norms of specifications corresponding to only six from the eight parameters assessed in the research; the mortar with addition of 4,0% of tire rubber powder met the established requirements corresponding to only the resistance to compression and the resistance of adherence to traction. Thus, the other kinds of mortar with addition of 8,0 %, 12,0 %, 16,0 % and 20,0 % of tire rubber powder met the requirements of specifications corresponding to only the resistance to compression and the resistance of adherence to traction. This result concludes that the adding of tire rubber powder does not grant improvement to the mortar of type II grouting to the laying of ceramic plates.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Portland cement being very common construction material has in its composition the natural gypsum. To decrease the costs of manufacturing, the cement industry is substituting the gypsum in its composition by small quantities of phosphogypsum, which is the residue generated by the production of fertilizers and consists essentially of calcium dihydrate and some impurities, such as fluoride, metals in general, and radionuclides. Currently, tons of phosphogypsum are stored in the open air near the fertilizer industries, causing contamination of the environment. The 226 Ra present in these materials, when undergoes radioactive decay, produces the 222Rn gas. This radioactive gas, when inhaled together with its decay products deposited in the lungs, produces the exposure to radiation and can be a potential cause of lung cancer. Thus, the objective of this study was to measure the concentration levels of 222Rn from cylindrical samples of Portland cement, gypsum and phosphogypsum mortar from the state of Paraná, as well as characterizer the material and estimate the radon concentration in an environment of hypothetical dwelling with walls covered by such materials. Experimental setup of 222Rn activity measurements was based on AlphaGUARD detector (Saphymo GmbH). The qualitative and quantitative analysis was performed by gamma spectrometry and EDXRF with Au and Ag targets tubes (AMPTEK), and Mo target (ARTAX) and mechanical testing with x- ray equipment (Gilardoni) and the mechanical press (EMIC). Obtained average values of radon activity from studied materials in the air of containers were of 854 ± 23 Bq/m3, 60,0 ± 7,2 Bq/m3 e 52,9 ± 5,4 Bq/m3 for Portland cement, gypsum and phosphogypsum mortar, respectively. These results extrapolated into the volume of hypothetical dwelling of 36 m3 with the walls covered by such materials were of 3366 ± 91 Bq/m3, 237 ± 28 Bq/m3 e 208 ± 21 Bq/m3for Portland cement, gypsum and phosphogypsum mortar, respectively. Considering the limit of 300 Bq/m3 established by the ICRP, it could be concluded that the use of Portland cement plaster in dwellings is not secure and requires some specific mitigation procedure. Using the results of gamma spectrometry there were calculated the values of radium equivalent activity concentrations (Raeq) for Portland cement, gypsum and phosphogypsum mortar, which were obtained equal to 78,2 ± 0,9 Bq/kg; 58,2 ± 0,9 Bq/kg e 68,2 ± 0,9 Bq/kg, respectively. All values of radium equivalent activity concentrations for studied samples are below the maximum level of 370 Bq/kg. The qualitative and quantitative analysis of EDXRF spectra obtained with studied mortar samples allowed to evaluate quantitate and the elements that constitute the material such as Ca, S, Fe, and others.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ye’elimite based cements have been studied since 70’s years in China, due to the irrelevant characteristics from a hydraulic and environmental point of view. One of them is the reduced fuel consumption, related to the lower temperature reaction required for this kind of cement production as compared to Ordinary Portland Cement (OPC), another characteristic is the reduced requirement of carbonates as a typical raw material, compared to OPC, with the consequent reduction in CO2 releases (~22%)from combustion. Thus, Belite-Ye’elimite-Ferrite (BYF) cements have been developed as potential OPC substitutes. BYF cements contain belite as main phase (>50 wt%) and ye´elimite as the second content phase (~30 wt%). However, an important technological problem is associated to them, related to the low mechanical strengths developed at intermediate hydration ages (3, 7 and 28 days). One of the proposed solutions to this problem is the activation of BYF clinkers by preparing clinkers with high percentage of coexisting alite and ye'elimite. These clinkers are known Belite-Alite-Ye’elimite (BAY) cements. Their manufacture would produce ~15% less CO2 than OPC. Alite is the main component of OPC and is responsible for early mechanical strengths. The reaction of alite and ye´elimite with water will develop cements with high mechanical strengths at early ages, while belite will contribute to later curing times. Moreover, the high alkalinity of BAY cement pastes/mortars/concretes may facilitate the use of supplementary cementitious materials with pozzolanic activity which also contributes to decrease the CO2 footprint of these ecocements. The main objective of this work was the design and optimization of all the parameters evolved in the preparation of a BAY eco-cement that develop higher mechanical strengths than BYF cements. These parameters include the selection of the raw materials (lime, gypsum, kaolin and sand), milling, clinkering conditions (temperature, and holding time), and clinker characterization The addition of fly ash has also been studied. All BAY clinker and pastes (at different hydration ages) were mineralogically characterized through laboratory X-ray powder diffraction (LXRPD) in combination with the Rietveld methodology to obtain the full phase assemblage including Amorphous and Crystalline non-quantified, ACn, contents. The pastes were also characterized through rheological measurements, thermal analyses (TA), scanning electronic microscopy (SEM) and nuclear magnetic resonance (NMR). The compressive strengths were also measured at different hydration times and compared to BYF.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Os betões atuais são materiais com custos extremamente competitivos devido ao baixo custo do cimento Portland. Contudo, os elevados níveis de emissões de C02 gerados na sua produção provocam o aumento do custo final do produto, tanto económico como ambiental. Devido a esta situação algumas adições têm sido estudadas como alternativas para substituir parcialmente os conteúdos de cimento no fabrico de betão. Uma vez que existem grandes quantidades de pó de mármore inutilizadas na região de Évora decidiu-se avaliar o seu comportamento. O pó de mármore foi adicionado em certas percentagens de forma a reduzir os conteúdos de cimento, permitindo avaliar se este iria manter e/ou melhorar as características de resistência à compressão e trabalhabilidade do betão. Além de avaliado o comportamento desta adição, o mesmo foi também comparado com a adição de filer calcário nas mesmas percentagens. Os resultados obtidos demonstraram a exequibilidade da utilização de ambas as adições. ABSTRACT: Concretes currently used in construction are materials with very competitive costs due to the low cost of Portland cement. However, high levels of C02 emissions generated in its production cause an increase of the final cost of the product, both economically and environmentally. Due to this situation, some additions have been studied as alternatives to replace partially cement contents in concrete production. Since there are large quantities of marble dust in the region of Évora, it was decided to evaluate his behavior. The marble dust was added in known percentages so the cement contents could be reduced, allowing evaluating if it will maintain and/or improve the characteristics of the compressive strength and workability of the concrete. ln addition to evaluating the behavior of marble dust, this addition was also compared with the addition of limestone filler in the same percentages. The results demonstrated the feasibility of using both additions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The oil production in mature areas can be improved by advanced recovery techniques. In special, steam injection reduces the viscosity of heavy oils, thus improving its flow to surrounding wells. On the other hand, the usually high temperatures and pressures involved in the process may lead to cement cracking, negatively affecting both the mechanical stability and zonal isolation provided by the cement sheath of the well. The addition of plastic materials to the cement is an alternative to prevent this scenario. Composite slurries consisting of Portland cement and a natural biopolymer were studied. Samples containing different contents of biopolymer dispersed in a Portland cement matrix were prepared and evaluated by mechanical and rheological tests in order to assess their behavior according to API (American Petroleum Institute) guidelines. FEM was also applied to map the stress distribution encountered by the cement at bottom bole. The slurries were prepared according to a factorial experiment plan by varying three parameters, i.e., cement age, contents of biopolymer and water-to-cement ratio. The results revealed that the addition of the biopolymer reduced the volume of free water and the setting time of the slurry. In addition, tensile strength, compressive strength and toughness improved by 30% comparing hardened composites to plain Portland slurries. FEM results suggested that the stresses developed at bottomhole may be 10 to 100 times higher than the strength of the cement as evaluated in the lab by unconfined mechanical testing. An alternative approach is proposed to adapt the testing methodology used to evaluate the mechanical behavior of oilwell cement slurries by simulating the confined conditions encountered at bottornhole

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The sharp consumption of natural resources by the construction industry has motivated numerous studies concerning the application of waste to replace partially or fully, some materials, such as aggregates, thereby reducing the environmental impact caused by the extraction of sand and crushing process. The application of stone dust from crushing process arising as an aggregate for the production of Portland cement concrete is a viable alternative in view of the high cost of natural sands, in addition to the environmental damage which causes its operation to the environment. The stone dust has reduced cost compared to natural sand because it is produced in the beds of their own quarries, which are usually located close to major urban centers. This study examined the feasibility of using stone dust from the crushing of rock gneisses in the state of Bahia, replacing natural quartz sand. In the development of scientific study was conducted to characterize physical and chemical raw materials applied and molded cylindrical specimens , using as reference values Fck 20, Fck 25 and Fck 30 MPa ( resistance characteristic of the concrete after 28 days) in following compositions stone powder: 10%, 30%, 50 %, 100% and 100% with additive. The specimens were cured and subjected to the tests of compressive strength and water absorption, then the samples were subjected to the tests of X-ray diffraction and scanning electron microscopy. The results obtained showed that the composition with 10% stone powder showed the best results regarding the physical and mechanical tests performed, confirming the reduction in compressive strength and increased water uptake increased as the content of the powder stone in the concrete composition

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cementation operation consists in an extremely important work for the phases of perforation and completion of oil wells, causing a great impact on the well productivity. Several problems can occur with the cement during the primary cementation, as well as throughout the productive period. The corrective operations are frequent, but they are expensive and demands production time. Besides the direct cost, prejudices from the interruption of oil and gas production till the implementation of a corrective operation must be also taken into account. The purpose of this work is the development of an alternative cement paste constituted of Portland cement and porcelainized stoneware residue produced by ceramic industry in order to achieve characteristics as low permeability, high tenacity, and high mechanical resistance, capable of supporting various operations as production or oil wells recuperation. Four different concentration measures of hydrated paste were evaluated: a reference paste, and three additional ones with ceramic residue in concentrations of the order of 10%, 20% and 30% in relation to cement dough. High resistance and low permeability were found in high concentration of residues, as well as it was proved the pozolanic reactivity of the residue in relation to Portland cement, which was characterized through x-ray and thermogravimetry assays. It was evident the decrease of calcium hydroxide content, once it was substituted by formation of new hydrated products as it was added ceramic residue

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Compound Portland cements are commonly used in construction, among them stand out the CPII-Z, CPII-F and CPIV. These types of cement have limited application on oil well cementing, having its compositional characteristics focused specifically to construction, as cement for use in oil wells has greater complexity and properties covering the specific needs for each well to be coated. For operations of oil wells cementing are used Portland cements designed specifically for this purpose. The American Petroleum Institute (API) classifies cements into classes designated by letters A to J. In the petroleum industry, often it is used Class G cement, which is cement that meets all requirements needed for cement from classes A to E. According to the scenario described above, this paper aims to present a credible alternative to apply the compound cements in the oil industry due to the large availability of this cement in relation to oil well cements. The cements were micro structurally characterized by XRF, XRD and SEM tests, both in its anhydrous and hydrated state. Later technological tests were conducted to determine the limits set by the NBR 9831. Among the compound cements studied, the CPII-Z showed satisfactory properties for use in primary and secondary operations of oil wells up to 1200 meters cementing