997 resultados para POLYMER CRYSTALLIZATION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

After isothermal crystallization, poly(ethylene terephthalate) (PET) showed double endothermic behavior in the differential scanning calorimetry (DSC) heating scan. During the heating scans of semicrystalline PET, a metastable melt which comes from melting thinner lamellar crystal populations formed between the low and the upper endothermic temperatures. The metastable melt can recrystallize immediately just above the low melting temperature and form thicker lamellae than the original ones. The thickness and perfection depends on the crystallization time and crystallization temperature. The crystallization kinetics of this metastable melt can be determined by means of DSC. The kinetics analysis showed that the isothermal crystallization of the metastable PET melt proceeds with an Avrami exponent of n = 1.0 similar to 1.2, probably reflecting one-dimensional or irregular line growth of the crystal occurring between the existing main lamellae with heterogeneous nucleation. This is in agreement with the hypothesis that the melting peaks are associated with two distinct crystal populations with different thicknesses. (C) 2000 John Wiley & Sons, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Isothermal and nonisothermal crystallization behavior for PEKK(T) was studied using differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and electron diffraction (ED). In the isothermal crystallization process, the Avrami parameters obtained were n = 2.33-2.69, which shows crystal growth of two-dimensional extensions consistent with our observations by TEM. The lamellar thickness increases with the crystallization temperature of PEKK(T) crystallized isothermally from the melt. However, for the nonisothermal crystallization of PEKK(T), the results from the modified Avrami analysis show two different crystallization processes. Avrami exponents n(1) = 3.61-5.30, obtained from the primary crystallization process, are much bigger than are the secondary n(2) = 2.26-3.04 and confirmed by the observation of the spherulite morphology. PEKK(T) crystallized isothermally from the melt possesses the same crystal structure (Form I) as that from nonisothermal melt crystallization. The results from TEM observation show that the spherulite radius decreases with an increasing cooling rate. (C) 2001 John Wiley & Sons, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of PMR-polyimide(POI) as the interfacial agent on the interface characteristics, morphology features and crystallization of poly (ether sulfone) /poly (phenylene sulfide) (PES/PPS) and poly(ether ether ketone)/poly (ether sulfone) (PEEK/PES) partly miscible blends were investigated by means of the scanning electron microscopy, WAXD and XPS surface analysis. It is found that the interfacial adhesion was enhanced remarkably, the size of the dispersed phase particles was reduced significantly and the miscibility was improved by the addition of POI. During melt blending cross-link and/or grafting reaction of POI with PES, PEEK and PPS homopolymers was detected, however the reaction activity of POI with PPS was much higher than that of PES and PEEK. It was also found that POI was an effective nucleation agent of the crystallization of PPS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nonisothermal crystallization behavior of polyethylene oxide (PEO) in poly(ethylene terephthalate)poly(ethylene oxide) (PETPEO) segmented copolymer and PEO homopolymer has been studied by means of differential scanning calorimetry, as well as transmission electron microscope. The kinetics of PEO in copolymer and PEO homopolymer under nonisothermal crystallization condition has been analyzed by Ozawa equation. The results show that Ozawa equation only describes the crystallization behavior of PEO-6000 homopolymer successfully, but fails to describe the whole crystallization process of PEO in copolymer because the secondary crystallization in the later stage could not be neglected. Due to the constraint of PET segments imposed on the PEO segments, a distinct two stage of crystallization of PEO in copolymer has been investigated by using Avrami equation modified by Jeziorny to deal with the nonisothermal crystallization data. In the case of PEO-6000 homopolymer, good linear relation for the whole crystallization process is obtained owing to the secondary crystallization does not occur under our experimental condition. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nonisothermal crystallization behavior of Ethylene Terephthalate-Ethylene Oxide (ET-EO) segmented copolymers has been studied with the use of differential scanning calorimetry (DSC). The kinetics of PEO in ET-EO segmented copolymer under nonisothermal crystallization conditions has been analyzed with the Ozawa equation. The results show that there is no agreement with Ozawa's theoretical predictions in the whole crystallization process owing to the constraint of ET segments imposed on the EO segments. A distinct two-crystallization process has been investigated by using the Avrami equation modified by Jeziorny to deal with the nonisothermal crystallization data. The value of the Avrami exponent n is independent of the length of soft segments. However, the crystallization rate is sensitive to the length of soft segments. The longer the soft segments, the faster the crystallization will be.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analysis of isothermal and nonisothermal crystallization kinetics of nylon 66 was carried out using differential scanning calorimetry (DSC). The commonly used Avrami equation and that modified by Jeziorny were used, respectively, to fit the primary stage of isothermal and nonisothermal crystallizations of nylon 66. In the isothermal crystallization process, mechanisms of spherulitic nucleation and growth were discussed. The lateral and folding surface free energies determined from the Lauritzen-Hoffman treatment are sigma = 9.77 erg/cm(2) and sigma (e) = 155.48 erg/cm(2), respectively; and the work of chain folding is q = 33.14 kJ/mol. The nonisothermal crystallization kinetics of nylon 66 was analyzed by using the Mo method combined with the Avrami and Ozawa equations. The average Avrami exponent (n) over bar was determined to be 3.45. The activation energies (DeltaE) were determined to be -485.45 kJ/mol and -331.27 kJ/mol, respectively, for the isothermal and nonisothermal crystallization processes by the Arrhenius and the Kissinger methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly (ethylene oxide) (PEO) and poly (trimethopropane trimethacrylate) (PTMPTMA) interpenetrate networks have been synthesized. The confined crystallization behavior of PEO in the PTMTYTMA networks has been investigated by a differential scanning calorimeter and scanning electron microscope. The degree of PEO crystallinity in PEO/PTMPTMA interpenetrate networks reduces with the increase of PTMPTMA. PEO is in an amorphous state when the concentration of PEO is lower than 50% in the interpenetrate networks system. The melting points of crystalline PEO in the networks are lower than that of pure PEG, and the melting point of PEO in the networks is higher and increases with the increase of PEO in the interpenetrate networks. Wide-angle X-ray diffraction results show that the PEO crystallite size perpendicular to the (120) plane is not affected as much as PEO in silica networks. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By using different catalyst systems, two trans-1,4-polybutadiene (TPBD) samples with different tr trans-content and molecular weight were synthesized. The phase transition of two samples from monoclinic form to hexagonal phase was revealed by differential calorimeter scanning and X-ray, respectively. The small-angle X-ray scattering measurements showed the remarkable discrepancy of phase transition and melting point between the two samples was attributed to the different lamellar thickness of crystals: The crystals with different crystalline morphology and lamellar thickness were developed by casting different concentration TPBD solutions. Transmission electron microscopy morphology observations proved that annealing the specimen at the temperature above the phase transition point for different times resulted in the different lamellae thickening of monoclinic form. It means that annealing the TPBD in its hexagonal phase will also slightly favor the increase of both the phase transition temperature and melting point of hexagonal phase. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly(epsilon -caprolactone) (PCL) and silica (SiO2) organic-inorganic hybrid materials have been synthesized by the sol-gel method. The crystallization behavior of PCL in silica networks has been investigated using differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The degree of PCL crystallinity in PCL/SiO2 hybrid networks reduces with increase of SiO2. PCL is in an amorphous state when the concentration of PCL is lower than 40wt% in the hybrid system. The melting point of PCL in the networks is lower than, but close to that of pure PCL. WAXD and SEM results show that the crystalline behavior of PCL in PCL/SiO2 hybrid system is strictly confined. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In natural and synthetic materials having non-racemic chiral centers, chirality and structural ordering each play a distinct role in the formation of ordered states. Configurational chirality can be extended to morphological chirality when the phase, structures possess low liquid crystalline order. In the crystalline states the crystallization process suppresses the chiral helical morphology due to strong ordering interactions, In this Letter, we report the first observation of helical single lamellar crystals of synthetic non-racemic chiral polymers. Experimental evidence shows that the molecular chains twist along both the long and short axes of the helical lamellar crystals, which is the first time a double-twist molecular orientation in a helical crystal has been observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonisothermal crystallization and melting behavior of poly(P-hydroxybutyrate) (PHB)-poly(vinyl acetate) (PVAc) blends from the melt were investigated by differential scanning calorimetry using various cooling rates. The results show that crystallization of PHB from the melt in the PHB-PVAc blends depends greatly upon cooling rates and blend compositions. For a given composition, the crystallization process begins at higher temperatures when slower scanning rates are used. At a given cooling rate, the presence of PVAc reduces the overall PHB crystallization rate. The Avrami analysis modified by Jeziorny and a new method were used to describe the nonisothermal crystallization process of PHB-PVAc blends very well. The double-melting phenomenon is found to be caused by crystallization during heating in DSC. (C) 1999 John Wiley & Sons, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The overall isothermal crystallization kinetics and melting behavior of poly(beta-hydroxybutyrate) (PHB)/poly(vinyl acetate) (PVAc) blends were studied by using differential scanning calorimetry(DSC). The Avrami analysis indicates that the addition of PVAc into PHB results in the decrease in the overall crystallization rate of the PHB phase, but does not affect PHB's nucleation mechanism and geometry of crystal growth. The activation energy of the overall process of crystallization increases with the increasing PVAc content in the blends. The phenomenon of multiple melting endotherms is observed, which is caused by melting and recrystallization during the DSC heating run. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

After isothermal crystallization of the amorphous poly(ether ether ketone), double endothermic behaviour can be found through differential scanning calorimetry experiments. During the heating scan of semicrystalline PEEK, a metastable melt, which comes from the melt of the thinner lamellar crystal populations, can be obtained between these two endotherms. The metastable melt can recrystallize immediately just above the lower melting temperature and form slightly thicker lamellae than the original ones. The thickness and the perfection depend upon the crystallization time and the crystallization temperature. By comparing the TEM morphological observations of the samples before and after partial melting, it can be shown that lamellar crystals, having different thermodynamic stability, form during isothermal crystallization. After partial melting, only the type of lamellar crystal exhibiting the higher thermodynamic stability remains. Wide angle X-ray diffraction measurements shows a slightly change in the crystallinity of the samples before and after the partial melting. Small angle X-ray scattering results exhibit a change in the long period of the lamellar crystals before and after the partial melting process. The crystallization kinetics of the metastable melt can be determined by means of differential scanning calorimetry. The kinetic analysis showed that the isothermal crystallization of the metastable PEEK melt proceeds with an Avrami exponent of n = 1.0 similar to 1.4, reflecting that probably one-dimensional or an irregular line growth of the crystal occurred between the existing main lamellae with heterogeneous nucleation. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis of a new aryl ether ketone polymer with an advantageous ratio of glass transition temperature to melting temperature is reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Isothermal and nonisothermal melt crystallization kinetics of a novel poly(aryl ether ketone), PEDEKK, were investigated by differential scanning calorimetry. Several kinetic analyses were used to describe the crystallization behavior. The activation energies were determined as 425 and 176 KJ/mol for isothermal and nonisothermal crystallization, respectively. The equilibrium melting point T-m(o) was estimated to be 444 degrees C by using the Hoffman-Weeks approach. The observed crystallization characteristics of PEDEKK were compared with those of the other members of the poly(arpl ether ketone) family.