864 resultados para PLANET-FORMING ZONES
Resumo:
Three new cationic amphiphiles bearing anthraquinone moieties at the polar headgroup region were synthesized, The single-chain amphiphile, N,N-dimethyl-N-octadecyl-N-(9,10-dihydro dioxoanthracen-2-ylmethyl)ammonium bromide 1, in the presence of cetyltrimethylammonium bromide upon dispersion in water gave co-micellar aggregates containing covalently attached anthraquinone residues at the polar aqueous interfaces. The other two double-chain amphiphiles, N,N-dioctadecyl-N-methyl-N-(9,10-dihydro-9,10-dioxoanthracen-2-ylmethyl)ammonium bromide 2 and N,N-dimethyl-N-(1,2-bispalmitoyloxypropanyl)-N-(9,10-dihydro-9,10-dioxanthracen-2-ylmethyl)ammonium bromide 3, however, on dispersion in aqueous media produced vesicular aggregates. The critical temperatures for the gel to liquid-crystalline-like phase transition processes for the vesicular systems were determined by following temperature-dependent changes in the ratios of keto-enol tautomeric forms of benzoylacetanilide doped within respective. vesicular assemblies. The redox chemistry of the these supramolecular assemblies was also studied by following the time-dependent changes in the ITV-VIS absorption spectroscopy in the presence of exogenous reducing or oxidizing agents, Electrochemical studies using glassy carbon electrodes reveal that redox-active amphiphiles adsorb on to the glassy carbon surfaces to form electroactive deposits when dipped into aqueous suspensions of either of these aggregates irrespective of the micellar or vesicular nature of the dispersions.
Resumo:
This paper analyses environmental and socio-economic barriers for plantation activities on local and regional level and investigates the potential for carbon finance to stimulate the increased rates of forest plantation on wasteland, i.e., degraded lands, in southern India. Building on multidisciplinary field work and results from the model GCOMAP, the aim is to (1) identify and characterize the barriers to plantation activities in four agro-ecological zones in the state of Karnataka and (2) investigate what would be required to overcome these barriers and enhance the plantation rate and productivity. The results show that a rehabilitation of the wasteland based on plantation activities is not only possible but also anticipated by the local population and would lead to positive environmental and socio-economic effects at a local level. However, in many cases, the establishment of plantation activities is hindered by a lack of financial resources, low land productivity and water scarcity. Based on the model used and the results from the field work, it can be concluded that certified emission reductions such as carbon credits or other compensatory systems may help to overcome the financial barrier; however, the price needs to be significantly increased if these measures are to have any large-scale impact.
Resumo:
A three-dimensional mathematical model has been developed to simulate the gas flow, composition, and temperature profiles inside a cupola. Comparison of the model with the reported experimental data shows the presence of a zone with low combustion rate at the tuyere level. For a 24 in (610 mm) cupola with four rows of tuyeres, the combustion zones from each tuyere overlap each other, forming an overall combustion zone of cylindrical shape of height similar to 0.2 m. Using the model, it is found that the spout temperature initially increases with increasing blast velocity and attains a maximum. Further increase in blast velocity does not change the spout temperature. This suggests that smaller size tuyeres and higher permeability of the bed can give superior cupola performance. (C) 1997 The Institute of Materials.
Resumo:
Fragility is viewed as a measure of the loss of rigidity of a glass structure above its glass transition temperature. It is attributed to the weakness of directional bonding and to the presence of a high density of low-energy configurational states. An a priori fragility function of electronegativities and bond distances is proposed which quite remarkably reproduces the entire range of reported fragilities and demonstrates that the fragility of a melt is indeed encrypted in the chemistry of the parent material. It has also been shown that the use of fragility-modified activation barriers in the Arrhenius function account for the whole gamut of viscosity behavior of liquids. It is shown that fragility can be a universal scaling parameter to collapse all viscosity curves on to a master plot.
Resumo:
We report the formation ω phase in the remelted layers during laser cladding and remelting of quasicrystal forming Al65Cu23.3Fe11.7 alloy on pure aluminum. The ω phase is absent in the clad layers. In the remelted layer, the phase nucleates at the periphery of the primary icosahedral phase particles. A large number of ω phase particles forms enveloping the icosahedral phase growing into aluminum rich melt, which solidify as α-Al solid solution. On the other side it develops an interface with aluminum. A detailed transmission electron microscopic analysis shows that ω phase exhibits orientation relationship with icosahedral phase. The composition analysis performed using energy dispersive x-ray analyzer suggests that this phase has composition higher aluminum than the icosahedral phase. The analysis of the available phase diagram information indicates that the present results represent large departure from equilibrium conditions. A possible scenario of the evolution of the ω phase has been suggested.
Resumo:
An attempt has been made to describe the glass forming ability (GFA) of liquid alloys, using the concepts of the short range order (SRO) and middle range order (MRO) characterizing the liquid structure.A new approach to obtain good GFA of liquid alloys is based on the following four main factors: (1) formation of new SRO and competitive correlation with two or more kinds of SROs for crystallization, (2) stabilization of dense random packing by interaction between different types of SRO, (3) formation of stable cluster (SC) or middle range order (MRO) by harmonious coupling of SROs, and (4) difference between SRO characterizing the liquid structure and the near-neighbor environment in the corresponding equilibrium crystalline phases. The atomic volume mismatch estimated from the cube of the atomic radius was found to be a close relation with the minimum solute concentration for glass formation. This empirical guideline enables us to provide the optimum solute concentration for good GFA in some ternary alloys. Model structures, denoted by Bernal type and the Chemical Order type, were again tested in the novel description for the glass structure as a function of solute concentration. We illustrated the related energetics of the completion between crystal embryo and different types of SRO. Recent systematic measurements also provide that thermal diffusivity of alloys in the liquid state may be a good indicator of their GFA.
Resumo:
The modified McMurray Inverter with Pulse Forming Network (PFN) has been explained. The current and voltage waveshapes of the PFN commutation ci rcuit have been compared with conventional L-commutation circuit. The design method of PFN has been explained. Advantages of this type of commutation have been discussed. Experimental results are given.
Resumo:
Dendrimers are ideal platforms to study multivalent effects due to the presence of uniform end groups at their peripheries. This report concerns with a study of multivalent dendritic catalysts, both within and across dendrimer generations, and their effects to mediate C-C bond forming reactions on multivalent substrates that have two and three acrylate reactive sites. As many as fourteen multivalent dendritic catalysts were prepared using 0-3 generations of poly(propyl ether imine) dendrimers, incorporated with Pd(II) catalytic sites, both within and across the dendrimer generations. C-C Bond forming reactions of these substrates with iodobenzene, mediated by uniform concentration of the metal across all catalysts, showed formation of partially and fully functionalized cinnamates in varying ratios, depending on the extent of clustering of catalytic moieties at the peripheries of dendrimers within a dendrimer generation. In a given generation, higher clustering of catalytic moieties greatly assisted multiple C-C bond formations than presenting the same in lesser number. The studies demonstrate true benefits of clustering catalytic moieties within a dendrimer generation and the beneficial effects applicable to catalysis of substrates presenting more than one reactive center. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We report the formation omega phase in the remelted layers during laser cladding and remelting of quasicrystal forming Al65Cu23.3Fe11.7 alloy on pure aluminum. The omega phase is absent in the clad layers. In the remelted layer, the phase nucleates at the periphery of the primary icosahedral phase particles. A large number of omega phase particles forms enveloping the icosahedral phase growing into aluminum rich melt, which solidify as alpha-Al solid solution. On the other side it develops an interface with aluminum. A detailed transmission electron microscopic analysis shows that omega phase exhibits orientation relationship with icosahedral phase. The composition analysis performed using energy dispersive x-ray analyzer suggests that this phase has composition higher aluminum than the icosahedral phase. The analysis of the available phase diagram information indicates that the present results represent large departure from equilibrium conditions. A possible scenario of the evolution of the omega phase has been suggested.
Resumo:
We develop a framework for understanding the difference between strong and fragile behavior in the dynamics of glass-forming liquids from the properties of the potential energy landscape. Our approach is based on a master equation description of the activated jump dynamics among the local minima of the potential energy (the so-called inherent structures) that characterize the potential energy landscape of the system. We study the dynamics of a small atomic cluster using this description as well as molecular dynamics simulations and demonstrate the usefulness of our approach for this system. Many of the remarkable features of the complex dynamics of glassy systems emerge from the activated dynamics in the potential energy landscape of the atomic cluster. The dynamics of the system exhibits typical characteristics of a strong supercooled liquid when the system is allowed to explore the full configuration space. This behavior arises because the dynamics is dominated by a few lowest-lying minima of the potential energy and the potential energy barriers between these minima. When the system is constrained to explore only a limited region of the potential energy landscape that excludes the basins of attraction of a few lowest-lying minima, the dynamics is found to exhibit the characteristics of a fragile liquid.