123 resultados para PHOTOSENSITIZERS
Resumo:
A cavidade oral é um habitat favorável ao desenvolvimento de microrganismos, alguns dos quais podem causar doenças, sendo Enterococcus faecalis uma bactéria frequentemente encontrada em biofilmes instalados em diferentes nichos da cavidade oral. Este trabalho teve como objetivo testar a aplicabilidade da inativação fotodinâmica (PDI), usando porfirinas como fotossensibilizadores, como estratégia de controlo de biofilmes da cavidade oral, tomando E. faecalis como microrganismo modelo. Como fotossensibilizadores, foram testadas as porfirinas catiónicas Tetra-Py+-Me, Tri-Py+-Me-PF, PCat 2, PCat 3, PCat 4 e o corante azul de toluidina O (TBO), incluído como fotossensibilizador de referência. Os biofilmes de E. faecalis foram irradiados com luz branca (270 J.cm-2) a uma intensidade de 150 mW.cm-2, na presença de até 50 µM de porfirina ou até 20 µM de TBO. A cinética de inativação foi caracterizada pela variação da concentração de células viáveis ao longo da experiência. Foi também testada a inativação de células na forma livre, em condições equivalentes. Os biofilmes de E. faecalis mostraram-se muito resistentes à PDI com qualquer dos PS testados, não tendo sido conseguidos fatores de inativação superiores a 2 log com a concentração máxima de PS (50 µM) e a dose máxima de luz (270 J.cm-2). Na forma livre as células foram inativadas até ao limite de quantificação com concentrações de PS de 0,5 µM e doses de luz até 108 J.cm-2, com uma intensidade de 10 mW.cm-2. No entanto, a eficiência de ligação dos PS às células livres não foi maior do que aos biofilmes. Embora os fatores de inativação obtidos não permitam ainda considerar que a PDI com os compostos testados seja uma abordagem antimicrobiana eficiente contra biofilmes de E. faecalis, o facto de se confirmar uma relação entre as propriedades químicas e físicas do PS e a sua eficiência, bem como os resultados muito promissores obtidos com uma das famílias de porfirinas testadas apenas em células livres, justifica a prossecução do desenvolvimento de novos PS para o controle de biofilmes bacterianos na cavidade oral.
Resumo:
Ce projet de recherche mené en collaboration industrielle avec St-Jean Photochimie Inc. / PCAS Canada vise le développement et la caractérisation de dérivés dipyrrométhène pour des applications dans le domaine du photovoltaïque. La quête du récoltage des photons se situant dans le proche-infrarouge a été au centre des modifications structurales explorées afin d’augmenter l’efficacité de conversion des cellules solaires de type organique et à pigments photosensibles. Trois familles de composés intégrant le motif dipyrrométhène ont été synthétisées et caractérisées du point de vue spectroscopique, électrochimique, structural ainsi que par modélisation moléculaire afin d’établir des relations structures-propriétés. La première famille comporte six azadipyrrométhènes au potentiel de coordination tétradentate sur des centres métalliques. Le développement d’une nouvelle voie synthétique asymétrique combinée à l’utilisation d’une voie symétrique classique ont permis d’obtenir l’ensemble des combinaisons de substituants possibles sur les aryles proximaux incluant les noyaux 2-hydroxyphényle, 2-méthoxyphényle et 2- pyridyle. La modulation du maximum d’absorption dans le rouge a pu être faite entre 598 et 619 nm. De même, la présence de groupements méthoxyle ou hydroxyle augmente l’absorption dans le violet (~410 nm) tel que démontré par modélisation. La caractérisation électrochimique a montré que les dérivés tétradentates étaient en général moins stables aux processus redox que leur contre-parti bidentate. La deuxième famille comporte dix dérivés BODIPY fusionnés de façon asymétrique en position [b]. L’aryle proximal a été modifié de façon systématique afin de mieux comprendre l’impact des substituents riches en électron et de la fusion de cycles aromatiques. De plus, ces dérivés ont été mis en relation avec une vaste série de composés analogues. Les résultats empiriques ont montré que les propriétés optoélectroniques de la plateforme sont régies par le degré de communication électronique entre l’aryle proximal, le pyrrole sur lequel il est attaché et le noyau indolique adjacent à ce dernier. Les maximums d’absorption dans le rouge sont modulables entre 547 et 628 nm et la fluorescence des composés se situe dans le proche- infrarouge. L’un des composé s’est révélé souhaitable pour une utilisation en photovoltaïque ainsi qu’à titre de sonde à pH. La troisième famille comporte cinq complexes neutres de RuII basés sur des polypyridines et portant un ligand azadipyrrométhène cyclométalé. Les composés ont montré une forte absorption de photons dans la région de 600 à 800 nm (rouge à proche- infrarouge) et qui a pu être étendue au-delà de 1100 nm dans le cas des dérivés portant un ligand terpyridine. L’analyse des propriétés optoélectroniques de façon empirique et théorique a montré un impact significatif de la cyclométalation et ouvert la voie pour leur étude en tant que photosensibilisateurs en OPV et en DSSC. La capacité d’un des complexes à photo-injecter un électron dans la bande de conduction du semi-conducteur TiO2 a été démontré en collaboration avec le groupe du Pr Gerald J. Meyer à University of North Carolina at Chapel Hill, premier pas vers une utilisation dans les cellules solaires à pigments photosensibles. La stabilité des complexes en solution s’est toutefois avérée problématique et des pistes de solutions sont suggérées basées sur les connaissances acquises dans le cadre de cette thèse.
Resumo:
This thesis explores the advancement of cancer treatment through targeted photodynamic therapy (PDT) using bioengineered phages. It aims to harness the specificity of phages for targeting cancer-related receptors such as EGFR and HER2, which are pivotal in numerous malignancies and associated with poor outcomes. The study commenced with the M13EGFR phage, modified to target EGFR through pIII-displayed EGFR-binding peptides, demonstrating enhanced killing efficiency when conjugated with the Rose Bengal photosensitizer. This phase underscored phages' potential in targeted PDT. A breakthrough was achieved with the development of the M137D12 phage, engineered to display the 7D12 nanobody for precise EGFR targeting, marking a shift from peptide-based to nanobody-based targeting and yielding better specificity and therapeutic results. The translational potential was highlighted through in vitro and in vivo assays employing therapeutic lasers, showing effective, specific cancer cell killing through a necrotic mechanism. Additionally, the research delved into the interaction between the M13CC phage and colon cancer models, demonstrating its ability to penetrate and disrupt cancer spheroids only upon irradiation, indicating a significant advancement in targeting cells within challenging tumor microenvironments. In summary, the thesis provides a thorough examination of the phage platform's efficacy and versatility for targeted PDT. The promising outcomes, especially with the M137D12 phage, and initial findings on a HER2-targeting phage (M13HER2), forecast a promising future for phage-mediated, targeted anticancer strategies employing photosensitizers in PDT.