982 resultados para PHOTODYNAMIC THERAPY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Up-regulation of stress-activated proteins in cancer cells plays a protective role against photodynamic induced apoptosis. Post photodynamic therapy extracted normal rat liver tissue usually shows a fraction of surviving cells, the photodynamic resistant cells, residing in the necrotic region. To treat these photo-dynamic resistant cells a technique has been proposed based on fractionated drug administration of diluted photosensitizer, keeping the net concentration (5 mg/kg) constant, and subsequently varying drug light interval (DLI). Flourescence measurements were made for the presence of photosensitizer in a tissue. For qualitative analysis both histological and morphological studies were made. Although preliminary aim of this approach was not achieved but there were some interesting observation made i.e. for higher dilution of photosensitizer there was a sharp boundary between necrotic and normal portion of tissue. An increase in the absorption coefficient (alpha) from 2.7 -> 2.9 was observed as photosensitizer was diluted while the corresponding threshold dose (D (th)) persistently decreases from (0.10 -> 0.02) J/cm(2) when irradiated with a 635 nm laser fluence of 150 J/cm(2).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clin Microbiol Infect 2012; 18: E380E388 Abstract In this randomized clinical trial, the clinical and mycological efficacy of Photodynamic Therapy (PDT) was compared with that of topical antifungal therapy for the treatment of denture stomatitis (DS) and the prevalence of Candida species was identified. Patients were randomly assigned to one of two groups (n = 20 each); in the nystatin (NYT) group patients received topical treatment with nystatin (100 000 IU) four times daily for 15 days and in the PDT group the denture and palate of patients were sprayed with 500 mg/L of Photogem (R), and after 30 min of incubation, were illuminated by light emitting-diode light at 455 nm (37.5 and 122 J/cm2, respectively) three times a week for 15 days. Mycological cultures taken from dentures and palates and standard photographs of the palates were taken at baseline (day 0), at the end of the treatment (day 15) and at the follow-up time intervals (days 30, 60 and 90). Colonies were quantified (CFU/mL) and identified by biochemical tests. Data were analysed by Fishers exact test, analysis of variance and Tukey tests and ? test (a = 0.05). Both treatments significantly reduced the CFU/mL at the end of the treatments and on day 30 of the follow-up period (p <0.05). The NYT and PDT groups showed clinical success rates of 53% and 45%, respectively. Candida albicans was the most prevalent species identified. PDT was as effective as topical nystatin in the treatment of DS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background Photodynamic therapy (PDT) using 5-aminolevulinic acid (5-ALA) is a skin cancer therapy that still has limitations due to the low penetration of this drug into the skin. We have proposed in this work a delivery system for 5-ALA based on liposomes having lipid composition similar to the mammalian stratum corneum (SCLLs) in order to optimize its skin delivery in Photodynamic Therapy (PDT) of skin cancers. Methods SCLLs were obtained by reverse phase evaporation technique and size distribution of the vesicles was determinated by photon correlation spectroscopy. In vitro permeation profile was characterized using hairless mouse skin mounted in modified Franz diffusion cell. Results Size exclusion chromatography on gel filtration confirmed vesicle formation. SCLLs obtained by presented a degree of encapsulation of 5-ALA around 5.7%. A distribution of vesicle size centering at around 500 nm and 400 nm respectively for SCLLs and SCLLs containing 5-ALA was found. In vitro 5-ALA permeation study showed that SCLLs preparations presented higher skin retention significantly (p < 0.05) on the epidermis without SC + dermis, with a decreasing of skin permeation compared to aqueous solution. Conclusions The in vitro delivery performance provided by SCLLs lead to consider this systems adequate for the 5-ALA-PDT of skin cancer, since SCLLs have delivered 5-ALA to the target skin layers (viable epidermis + dermis) to be treated by topical PDT of skin cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: This study has evaluated the effect of antimicrobial photodynamic therapy (aPDT) used in conjunction with non-surgical and surgical periodontal treatment (PT) in modulating gene expression during periodontal wound healing. Methods: Fifteen patients with chronic periodontitis, presenting bilaterally lower molars with class III furcation lesions and scheduled for extraction, were selected. In initial therapy, scaling and root planing (SRP) was performed in the Control Group (CG), while SRP + aPDT were performed in the Test Group (TG). 45 days later, flap surgery plus SRP, and flap surgery plus SRP + aPDT were performed in the CG and TG, respectively. At 21 days post-surgery, the newly formed granulation tissue was collected, and Real-time PCR evaluated the expression of the genes: tumor necrosis factor-?, interleukin-1?, interleukin-4, interleukin-10, matrix metalloproteinase-2 (MMP-2), tissue inhibitor of metalloproteinase-2 (TIMP-2), osteoprotegerin (OPG), receptor activator of nuclear factor- ?B ligand (RANKL), type I collagen, alkaline phosphatase, osteopontin, osteocalcin, and bone sialoprotein. Results: There were statistically significant differences between the groups in relation to mRNA levels for MMP-2 (TG = 3.26 ± 0.89; CG = 4.23 ± 0.97; p = 0.01), TIMP-2/MMP-2 ratio (TG = 0.91 ± 0.34; CG = 0.73 ± 0.32; p = 0.04), OPG (TG = 0.84 ± 0.45; CG = 0.30 ± 0.26; p = 0.001), and OPG/RANKL ratio (TG = 0.60 ± 0.86; CG = 0.23 ± 0.16; p = 0.04), favoring the TG. Conclusion: The present data suggest that the aPDT associated to nonsurgical and surgical periodontal therapy may modulate the extracellular matrix and bone remodeling by up regulating the TIMP- 2/MMP-2 and OPG/RANKL mRNA ratio, but the clinical relevance needs to be evaluated in further studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to compare the disinfection of dentine using photodynamic therapy with methylene blue in different formulations. Thirty bovine teeth roots were autoclaved and incubated with a suspension of Enterococcus faecalis. The specimen were randomly divided into three groups: G1, the roots were filled with 10 mM methylene blue dissolved in water; G2, the roots were filled with 10 mM methylene blue dissolved in a mixture of glycerol: ethanol: water; G3, roots filled with 100 mM methylene blue dissolved in water. The groups were irradiated with a 660 nm diode laser with an output power of 100 mW for 4 min, energy density of 850 J/cm2 and after this procedure, the sensitizer was removed and microbial samples were collected from within the root canals. The samples were plated on mEnterococcus to count the colony-forming units (CFU/mL). The means were: Group 1=513×103, Group 2=1431×103 and Group 3=2.96×103. The statistical analysis detected higher disinfection achieved by G3 when compared with groups G1 and G2, and no significant difference between the groups G1 and G2 (P>0.05). The increase of the concentration of methylene blue dye achieved higher disinfection in photodynamic therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to evaluate photodynamic therapy (PDT) by using a hematoporphyrin derivative as a photosensitizer and light-emitting diodes (LEDs) as light source in induced mammary tumors of Sprague–Dawley (SD) rats. Twenty SD rats with mammary tumors induced by DMBAwere used. Animals were divided into four groups: control (G1), PDT only (G2), surgical removal of tumor (G3), and submitted to PDT immediately after surgical removal of tumor (G4). Tumors were measured over 6 weeks. Lesions and surgical were LEDs lighted up (200 J/cm2 dose). The light distribution in vivo study used two additional animals without mammary tumors. In the control group, the average growth of tumor diameter was approximately 0.40 cm/week. While for PDT group, a growth of less than 0.15 cm/week was observed, suggesting significant delay in tumor growth. Therefore, only partial irradiation of the tumors occurred with a reduction in development, but without elimination. Animals in G4 had no tumor recurrence during the 12 weeks, after chemical induction, when compared with G3 animals that showed 60 % recurrence rate after 12 weeks of chemical induction. PDT used in the experimental model of mammary tumor as a single therapy was effective in reducing tumor development, so the surgery associated with PDT is a safe and efficient destruction of residual tumor, preventing recurrence of the tumor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photodynamic therapy (PDT) is a treatment modality that has advanced rapidly in recent years. It causes tissue and vascular damage with the interaction of a photosensitizing agent (PS), light of a proper wavelength, and molecular oxygen. Evaluation of vessel damage usually relies on histopathology evaluation. Results are often qualitative or at best semi-quantitative based on a subjective system. The aim of this study was to evaluate, using CD31 immunohistochem- istry and image analysis software, the vascular damage after PDT in a well-established rodent model of chemically induced mammary tumor. Fourteen Sprague-Dawley rats received a single dose of 7,12-dimethylbenz(a)anthraxcene (80 mg/kg by gavage), treatment efficacy was evaluated by comparing the vascular density of tumors after treatment with Photogem® as a PS, intraperitoneally, followed by interstitial fiber optic lighting, from a diode laser, at 200 mW/cm and light dose of 100 J/cm directed against his tumor (7 animals), with a control group (6 animals, no PDT). The animals were euthanized 30 hours after the lighting and mammary tumors were removed and samples from each lesion were formalin-fixed. Immunostained blood vessels were quantified by Image Pro-Plus version 7.0. The control group had an average of 3368.6 ± 4027.1 pixels per picture and the treated group had an average of 779 ± 1242.6 pixels per area (P < 0.01), indicating that PDT caused a significant decrease in vascular density of mammary tumors. The combined immu- nohistochemistry using CD31, with selection of representative areas by a trained pathology, followed by quantification of staining using Image Pro-Plus version 7.0 system was a practical and robust methodology for vessel damage evalua- tion, which probably could be used to assess other antiangiogenic treatments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photodynamic therapy (PDT) is based on the synergism of a photosensitive drug (a photosensitizer) and visible light to destroy target cells (e.g., malignant, premalignant, or bacterial cells). The aim of this study was to investigate the response of normal rat tongue mucosa to PDT following the topical application of hematoporphyrin derivative (Photogem®), Photodithazine®, methylene blue (MB), and poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with MB. One hundred and thirty three rats were randomly divided in various groups: the PDT groups were treated with the photosensitizers for 10 min followed by exposure to red light. Those in control groups received neither photosensitizer nor light, and they were subjected to light exposure alone or to photosensitizer alone. Fluorescent signals were obtained from tongue tissue immediately after the topical application of photosensitizers and 24 h following PDT. Histological changes were evaluated at baseline and at 1, 3, 7, and 15 days post-PDT treatment. Fluorescence was detected immediately after the application of the photosensitizers, but not 24 h following PDT. Histology revealed intact mucosa in all experimental groups at all evaluation time points. The results suggest that there is a therapeutic window where PDT with Photogem®, Photodithazine®, MB, and MB-loaded PLGA nanoparticles could safely target oral pathogenic bacteria without damaging normal oral tissue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the clinical limitations of the photodynamic therapy (PDT) is the reduced light penetration into biological tissues. Pulsed lasers may present advantages concerning photodynamic response when compared to continuous wave (CW) lasers operating under the same average power conditions. The aim of this study was to investigate PDT-induced response when using femtosecond laser (FSL) and a first-generation photosensitizer (Photogem) to evaluate the induced depth of necrosis. The in vitro photodegradation of the sensitizer was monitored during illumination either with CWor an FSL as an indirect measurement of the PDT response. Healthy liver of Wistar rats was used to evaluate the tissue response. The photosensitizer was endovenously injected and 30 min after, an energy dose of 150 Jcm-2 was delivered to the liver surface. We observed that the photodegradation rate evaluated via fluorescence spectroscopy was higher for the FSL illumination. The FSL-PDT produced a necrosis nearly twice as deep when compared to the CW-PDT. An increase of the tissue temperature during the application was measured and was not higher than 2.5 °C for the CW laser and not higher than 4.5 °C for the pulsed laser. FSL should be considered as an alternative in PDT applications for improving the results in the treatment of bulky tumors where higher light penetration is required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Therapies for the treatment of prostate cancer show several limitations, especially when the cancer metastasizes or acquires resistance to treatment. In addition, most of the therapies currently used entails the occurrence of serious side effects. A different therapeutic approach, more selective and less invasive with respect either to radio or to chemotherapy, is represented by the photodynamic therapy (PDT). The PDT is a treatment that makes use of photosensitive drugs: these agents are pharmacologically inactive until they are irradiated with light at an appropriate wavelength and in the presence of oxygen. The drug, activated by light, forms singlet oxygen, a highly reactive chemical species directly responsible for DNA damage, thus of cell death. In this thesis we present two synthetic strategies for the preparation of two new tri-component derivatives for photodynamic therapy of advanced prostate cancer, namely DRPDT1 and DRPDT2. Both derivatives are formed by three basic elements covalently bounded to each other: a specific ligand with high affinity for the androgen receptor, a suitably chosen spacer molecule and a photoactivated molecule. In particular, DRPDT2 differs from DRPDT1 from the nature of the AR ligand. In fact, in the case of DRPDT2 we used a synthetically engineered androgen receptor ligand able to photo-react even in the absence of oxygen, by delivering NO radical. The presence of this additional pharmacophore, together with the porphyrin, may ensure an additive/synergistic effect to the photo-stimulated therapy, which than may act both in the presence of oxygen and in hypoxic conditions. This approach represents the first example of multimodal photodynamic therapy for prostate cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This open-label, prospective, small-scale study investigated the benefits of same-day verteporfin and intravitreal ranibizumab in patients with predominantly classic, minimally classic or occult subfoveal choroidal neovascularization (CNV) secondary to age-related macular degeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Porfimer is an intravenous (i.v.) injectable photosensitizing agent used in the photodynamic treatment of tumours and of high-grade dysplasia in Barrett's oesophagus.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To compare the adjunctive clinical effects in the non-surgical treatment of peri-implantitis with either local drug delivery (LDD) or photodynamic therapy (PDT).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photodynamic therapy (PDT) is an established treatment for basal cell carcinomas (BCCs). Although recurrences are sometime observed, their histological patterns have never been specifically studied or compared with the one of the initial tumor.