261 resultados para PHENYLENE
Resumo:
Nonisothermal and isothermal crystallization kinetics of an aromatic thermoplastic polyimide derived from 3,3',4,4'-oxydiphthalic dianhydride and 4,4'-oxydianiline have been investigated by means of differential scanning calorimetry (DSC) and wide-angle X-ray diffraction. The results for nonisothermal crystallization study showed that a weak melting peak appeared during the first heating process, whereas no crystallization peak appeared in the DSC curve during the subsequent cooling process. On the other hand, the study for the isothermal crystallization in the temperature range of 260-330 degrees C showed that a new exothermic peak appeared at lower temperature for the samples crystallized for 100 min at 300 degrees C.
Resumo:
Three series of poly(phenylene vinylene) (PPV) derivatives containing hole-transporting triphenylamine derivatives [N-(4-octoxylphenyl)diphenylamine, N,N'-di(4-octyloxylphenyl)-N,N'-diphenyl-1,4-phenylenediamine, and N,N'-di(4-octoxylphenyl)-N,N'-diphenylbenzidine] (donor) and electron-transporting oxadiazole unit (2,5-diphenyl-1,3,4-oxadiazole) (acceptor) in the main chain were synthesized by improved Wittig copolymerization. The resulting donor-acceptor (D-A) polymers are readily soluble in common organic solvents, such as chloroform, dichloroethane, THF, and toluene.
Resumo:
An anionic, phosphonate-functionalized polyfluorene, i.e., poly(9,9-bis(3'-phosphatepropyl)fluorene-alt-1,4-phenylene) sodium salt (PFPNa), has been synthesized by copolymerization of phosphonic acid-substituted 2,7-dibromofluorene and phenyldiboronic ester via direct Suzuki polycondensation reaction in DMF/water. Polymer PFPNa is highly soluble and emissive in water with a solubility of 60 mg/mL and a photoluminescence quantum yield of 75%. The absorption and fluorescence spectra of PFPNa are strongly dependent on pH value owing to the partial protonation of phosphate groups and the aggregation of the polymer chains.
Resumo:
A poly(9,10-bisalkynyl-2,6-anthrylene) (PI) and five poly(9,10-bisarylethynyl-2,6-anthrylene)s(P2-P6) as soluble conjugated polymers have been synthesized and characterized. All polymers exhibit two-dimensional conjugated characteristics as indicated by absorption spectra comprising multi-bands in the range of 300-600 nm. Compared with P1, polymers P2-P5, which contain phenylethynyl substituents with the longer conjugation than alkynyl groups, exhibit a similar to 60 nm red shift of absorption edge. However, further increasing the conjugation length of the arylethynyl substituents (longer than phenylethynyl) has only a no effect on the conjugation of the polymer chains, while comparing the absorption spectra of P6 with those of P2-P5.
Resumo:
An anionic water-soluble polyfluorene derivative, poly(9,9-bis(6'-phosphatehexyl)fluorene-alt-1,4-phenylene) sodium salt (PFHPNa), was synthesized by Suzuki coupling reaction in DMF/water. Polymer PFHPNa was well soluble in water with a strong blue fluorescence emission. Effect of the side chain length on fluorescence sensory properties was studied by comparing quenching efficiencies toward different quenchers of PFHPNa with a reported polymer poly(9,9-bis(3'-phosphatepropyl)fluorene-alt-1,4-phenylene) sodium salt (PFPPNa), which have different side chains in length. For small molecular quenchers (methylviologen, MV2+) and meso-5,10,15,20-tetrakis-(N-methyl-4-pyridyl)porphine (TMPyP4), polymer PFHPNa had lower sensitivity due to the much longer side chain length. The positively charged metalloprotein cytochrome c could quench fluorescence of conjugated polymers via energy transfer and electron transfer.
Resumo:
Four cyclometalated Pt(II) complexes, i.e., [(L-2)PtCl] (1b), [(L-3)PtCl] (1c), [(L-2)PtC CC6H5] (2b) and [(L-3)PtC CC6H5] (2c) (HL2 = 4-[p-(N-butyl-N-phenyl)anilino]-6-phenyl-2,2'-bipyridine and HL3 = 4-[p(-N,N'-dibutyl-N'-phenyl)phenylene-diamino]-phenyl-6-phenyl-2,2'-bipyridine), have been synthesized and verified by H-1 NMR, C-13 NMR and X-ray crystallography. Unlike previously reported complexes [(L-1)PtCl] (1a) and [(L-1)PtC CC6H5] (2a) (HL1 = 4,6-diphenyl-2,2'-bipyridine), intense and continuous absorption bands in the region of 300-500 nm with strong metal-to-ligand charge transfer ((MLCT)-M-1) (d pi(Pt) -> pi*(L)) transitions (epsilon similar to 2 x 10(4) dm(3) mol (1) cm (1)) at 449-467 nm were observed in the UV-Vis absorption spectra of complexes 1b, 1c, 2b and 2c.
Resumo:
Here, a fluorescent switch is constructed combining hemin, hemin aptamer, and a newly synthesized anionic conjugated polymer (ACP), poly(9,9-bis(6'-phosphate-hexyl) fluorenealt-1,4-phenylene) sodium salt (PFHPNa/PFP). In the "off-state", the fluorescence of PFP is sensitively quenched by hemin, with a high K-sv value of similar to 10(7). While in the "on-state", the formation of the aptamer/hemin complex recovers the fluorescence intensity. The fluorescent switch is sensitive and selective to hemin. To testify the universality and practicality of the fluorescent switch, a series of label-free DNA-related sensing platforms are developed, containing three DNA sensing strategies and one ATP recognition strategy. The fluorescent switch developed is simple, sensitive, and universal, which extends applications of the anionic conjugated polymers.
Resumo:
The relationship between the performance characteristics of organic field-effect transistors (OFETs) with 2,5-bis(4-biphenylyl)-bithiophene/copper hexadecafluorophthalocyanine (BP2T/F16CuPc) heterojunctions and the thickness of the BP2T bottom layer is investigated. Three operating modes (n-channel, ambipolar, and p-channel) are obtained by varying the thickness of the organic semiconductor layer. The changes in operating mode are attributable to the morphology of the film and the hetero-junction effect, which also leads to an evolution of the field-effect mobility with increasing film thickness. In BP2T/F16CuPc heterojunctions the mobile charge carriers accumulate at both sides of the heterojunction interface, with an accumulation layer thickness of ca. 10 nm. High field-effect mobility values can be achieved in continuous and flat films that exhibit the heterojunction effect.
Resumo:
By incorporating 4,7-diphenyl- 2,1,3 benzothiadiazole instead of 2,1,3-benzothiadiazole into the backbone of polyfluorene, we developed a novel series of green light- emitting polymers with much improved color purity. Compared with the state-of-the-art green light-emitting polymer, poly(fluorene-co-benzothiadiazole) (lambda max = 537 nm), the resulting polymers (lambda(max) = 521 nm) showed 10-20 nm blueshifted electroluminescence (EL) spectra and greatly improved color purity because the insertion of two phenylene units between the 2,1,3-benzothiadiazole unit and the fluorene unit reduced the effective conjugation length in the vicinity of the 2,1,3-benzothiadiazole unit. As a result, the resulting polymers emitted pure green light with CIE coordinates of (0.29, 0.63), which are very close to (0.26, 0.65) of standard green emission demanded by the National Television System Committee (NTSC). Moreover, the insertion of the phenylene unit did not affect the photoluminescence (PL) and EL efficiencies of the resulting polymers. PL quantum efficiency in solid films up to 0.82 was demonstrated. Single-layer devices (ITO/PEDOT/ polymer/Ca/Al) of these polymers exhibited a turn-on voltage of 4.2 V, luminous efficiency of 5.96 cd A(-1) and power efficiency of 2.21 lm W-1. High EL efficiencies and good color purities made these polymers very promising for display applications.
Resumo:
Structures and crystal form transition of the novel aryl ether ketone polymer containing meta-phenylene linkage: PEKEKK(T/I) were investigated by wide angle X-ray diffraction (WAXD), imaging plates (IPs) and small angle X-ray scattering (SAXS). The energy of activation of the decomposition reaction and degree of crystallinity of PEKEKK(T/I) were determined by WAXD and thermo-gravimetric analysis (TGA), respectively. Results obtained from WAXD and IPs show that crystal forms I and II coexist in the PEKEKK(T/I) samples isothermally cold crystallized in the temperature range from 180degreesC to 240degreesC and only form I occurs in PEKEKK(T/I) samples isothermally cold crystallized at 270degreesC. The radius of gyration (Rg), thickness of microregions with electron-density fluctuations (E) and distribution of particle sizes were investigated by SAXS.
Resumo:
Blends of poly(ether-sulfone) (PES) and poly(phenylene sulfide) (PPS) with various compositions were prepared using an internal mixer at 290degreesC and 50 rpm for 10 min. The thermal and dynamic mechanical properties of PES/PPS blends have been investigated by means of DSC and DMA. The blends showed two glass transition temperatures corresponding to PPS-rich and PES-rich phases. Both of them decreased obviously for the blends with PES matrix. On the other hand, T-g of PPS and PES phase decreased a little when PPS is the continuous phase. In the blends quenched from molten state the cold crystallization temperature of PPS was detected in the blends of PES/PPS with mass ratio 50/50 and 60/40. The melting point, crystallization temperature and the crystallinity of blended PPS were nearly unaffected when the mass ratio of PES was less than 60%, however, when the amount of PES is over 60% in the blends, the crystallization of PPS chains was hindered. The thermal and the dynamic mechanical properties of the PPS/PES blends were mainly controlled by the continued phase.
Resumo:
An organic semiconductor that can be mass produced is synthesized by end-capping quaterthiophene with naphthyl units (NaT4). An organic thin-film transistor (OTFT, see figure) has been fabricated using this organic semiconductor, and exhibits stability under ambient conditions with a mobility of up to 0.40 cm(2) V-1 s(-1).
Resumo:
Monodisperse oligo[(1,4-phenyleneethynylene)-alt-(2,5-thiopheneethynylene)]s, new candidates for molecular wires, were rapidly synthesized via an iterative divergent/convergent doubling strategy in solution as well as on Merrifield's resin.
Resumo:
An organic light-emitting diode fabricated by doping a europium, complex tris(dibiphenoylmethane)-mono (phenanthroline)-europium (Eu(DBPM)(3) (Phen)) into polymer poly(2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene) and poly(N-carbazole) was realized by spin coating. Comparison with other europium complexes, due to the existence of a larger spectral overlap between Eu(DBPM)(3)(Phen) and poly(2-methoxy-5-(2-ethyl-hexyloxy)-1,4phenylene), a high efficiency red emission was achieved. The device showed a turn-on voltage of 5.2 V The maximum efficiency reached 0.47 cd/A at luminance of 50 cd/m(2). The maximum luminance can reach 150 cd/m(2) at 95 mA/cm(2). To the best of our knowledge, this is one of the best results based on europium complexes by spin-casting method.
Resumo:
HigWy efficient DCJTB-doped device was realized by enhanced electron injection and exciton confinement. A fluorine end-capped linear phenylene/oxadiazole oligomer 2,5-bis(4-fluorobiphenyl-4'-yl)-1,3,4-oxadiazole (1) and a trifluoromethyl end-capped oligomer 2,5-bis(4-trifluoromethylbiphenyl-4'-yl)-1,3,4-oxadiazole (2) were designed and incorporated as an electron transporting/hole blocking material in the device structure ITO/NPB (60 mn)/DCJTB:Alq(3) (0.5%, 10 nm)/1 or 2 (20 nm)/Alq(3) (30 mn)/LiF (1 nm)/Al (100 nm). The devices showed highly efficient red luminescence. In particular, the device based on 1 achieved pure red luminescence at 620 run originating from DCJTB, with a narrow FWHI of 65 nm, maximal brightness of 13,300 cd/m(2) at voltage of 20.8 V and current density of ca. 355 mA/cm(2). High current and power efficiencies (> 3.6 cd/A. 1.01m/W) were retained within a wide range of current densities. Our results show efficient and stable DCJTB-doped red electroluminescence could be anticipated for practical applications by taking advantage of the present approaches. The control experiments using BCP were also studied.