994 resultados para PHASE-TRANSFORMATIONS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

O desenvolvimento dos aços inoxidáveis Super-Martensíticos (SM) nasce da necessidade de implementar novas tecnologias, mais econômicas e amigáveis ao meio ambiente. Os aços inoxidáveis SM são uma derivação dos aços inoxidáveis martensíticos convencionais, diferenciando-se basicamente no menor teor de carbono, na adição de Ni e Mo. Foram desenvolvidos como uma alternativa para aços inoxidáveis duplex no uso de dutos para a extração de petróleo offshore em meados dos anos 90. Para que esses aços apresentem as propriedades mecânicas de resistência à tração e tenacidade é necessário que sejam realizados tratamentos de austenitização, seguido de têmpera, e de revenimento, onde, particularmente para este último, há várias opções de tempos e temperaturas. Como os tratamentos térmicos geram as propriedades mecânicas através de transformações de fase (precipitação) podem ocorrer alterações da resistência à corrosão. São conhecidos os efeitos benéficos da adição de Nb em aços inoxidáveis tradicionais. Por isso, o objetivo desta pesquisa foi estudar aços inoxidáveis SM contendo Nb. Foi pesquisada a influência da temperatura de revenimento sobre a resistência à corrosão de três aços inoxidáveis SM, os quais contêm 13% Cr, 5% Ni, 1% a 2% Mo, com e sem adições de Nb. No presente trabalho, foram denominados de SM2MoNb, SM2Mo e SM1MoNb, que representam aços com 2% Mo, 1% Mo e 0,11% Nb. Dado que os principais tipos de corrosão para aços inoxidáveis são a corrosão por pite (por cloreto) e a corrosão intergranular (sensitização), optou-se por determinar os Potenciais de Pite (Ep) e os Graus de Sensitização (GS) em função da temperatura de revenimento. Os aços passaram por recozimento a 1050°C por 48 horas, para eliminação de fase ferrita delta. Em seguida foram tratados a 1050 °C por 30 minutos, com resfriamento ao ar, para uniformização do tamanho de grão. A estrutura martensítica obtida recebeu tratamentos de revenimento em temperaturas de: 550 °C, 575 °C, 600 °C, 625 °C, 650 °C e 700 °C, por 2 horas. O GS foi medido através da técnica de reativação eletroquímica potenciodinâmica na versão ciclo duplo (DL-EPR), utilizando-se eletrólito de 1M H2SO4 + 0,01M KSCN. Para determinar o Ep foram realizados ensaios de polarização potenciodinâmica em 0,6M NaCl. Os resultados obtidos foram discutidos através das variações microestruturais encontradas. Foram empregadas técnicas de microscopia ótica (MO), microscopia eletrônica de varredura (MEV), simulação termodinâmica de fases através do programa Thermo-Calc e determinação de austenita revertida mediante difração de raios X (DRX) e ferritoscópio. A quantificação da austenita por DRX identificou que a partir de 600 °C há formação desta fase, apresentando máximo em 650 °C, e novamente diminuindo para zero a 700 °C. Por sua vez, o método do ferritoscópio detectou austenita nas condições em que a analise de DRX indicou valor nulo, sendo as mais críticas a do material temperado (sem revenimento) e do aço revenido a 700 °C. Propõe-se que tais diferenças entre os dois métodos se deve à morfologia fina da austenia retida, a qual deve estar localizada entre as agulhas de martensita. Os resultados foram discutidos em termos da precipitação de Cr23C6, Mo6C, NbC, fase Chi, austenita e ferrita, bem como das consequências do empobrecimento em Cr e Mo, gerados por tais microconstituintes. São propostos três mecanismos para explicar a sensitização: o primeiro é devido a precipitação de Cr23C6, o segundo a precipitação de fase Chi (rica em Cr e Mo) e o terceiro é devido a formação de ferrita durante o revenimento. O melhor desempenho quanto ao GS foi obtido para os revenimentos a 575 °C e 600°C, por 2 horas. Os resultados de Ep indicaram que o aço SM2MoNb, revenido a 575°C, tem o melhor desempenho quanto à resistência à corrosão por cloreto. Isso associado ao baixo GS coloca este aço, com este tratamento térmico, numa posição de destaque para aplicações onde a resistência à corrosão é um critério de seleção de material, uma vez que, segundo a literatura a temperatura de 575 °C está no intervalo de temperaturas de revenimento onde são obtidas as melhores propriedades mecânicas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

"Prepared for conference on "Phase transformations in solids" organized by National Research Council Committee on Solids, Cornell University, Aug. 23-27, 1948."

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Different amorphous structures have been induced in monocrystalline silicon by high pressure in indentation and polishing. Through the use of high-resolution transmission electron microscopy and nanodiffraction, it was found that the structures of amorphous silicon formed at slow and fast loading/unloading rates are dissimilar and inherit the nearest-neighbor distance of the crystal in which they are formed. The results are in good agreement with recent theoretical predictions. (C) 2004 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High-resolution transmission electron microscopy (HRTEM) was used to study the olivine to spinel transformation. HRTEM structure images of Mg2GeO4 olivine deformed under a pressure of 6 GPa at 600 degreesC clearly show that a shear mechanism dominates the transformation. The transformation is not a nucleation and growth mechanism. It also differs in certain crucial aspects from the type of martensitic transformation proposed before. During the transformation, it is a shear movement that brings the oxygen anions to their positions in the spinel structure. An edge dislocation following each shear then puts the cations in their spinel sites. The Burgers' vector of each dislocation is perpendicular to the anion shear direction. (C) 2004 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The edge-to-edge matching crystallographic model has been used to predict all the orientation relationships (OR) between crystals that have simple hexagonal close packed (HCP) and body-centered cubic (BCC) structures. Using the critical values for the interatomic spacing misfit along the matching directions and the cl-value mismatch between matching planes, the model predicted all the four common ORs, namely the Burgers OR, the Potter OR, the Pitsch-Schrader OR and the Rong Dunlop OR, together with the corresponding habit planes. Taking the c(H)/a(H) and a(H)/a(B) ratios as variables, where H and B denote the HCP and BCC structures respectively, the model also predicted the relationship between these variables and the four ORs. These predictions are perfectly consistent with the published experimental results. As was the case in the FCC/BCC system, the edge-to-edge matching model has been shown to be a powerful tool for predicting the crystallographic features of diffusion-controlled phase transformations. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A model for the crystallography and morphology of diffusion-controlled phase transformations - edge-to-edge matching - has been used to predict the orientation relationships (OR) and habit planes of precipitates Mg17Al12 in Mg-Al alloy, Mg24Y5 in Mg-Y alloy and alpha-Mn in Mg-Mn alloy. Based on the crystal structures and lattice parameters only, the model predicts that the possible ORs between Mg17Al12 and Mg matrix are the near Burgers OR, the Potter OR, the Gjonnes-Ostmoe OR and the Crawley OR. In the Mg-Y alloy, the OR between Mg24Y5 precipitates and the Mg matrix is predicted to be the Burgers OR only. The model also predicts that there are no reproducible ORs between alpha-Mn and Mg in the Mg-Mn alloy. Combining the edge-to-edge matching model and W. Zhang's Deltag approach, the habit plane and side facets of the precipitate for each OR can be determined. All the predicted ORs and the corresponding habit planes in Mg-Al and Mg-Y alloys agree very well with the experimental results. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The edge-to-edge matching model, which was originally developed for predicting crystallographic features in diffusional phase transformations in solids, has been used to understand the formation of in-plane textures in TiSi2 (C49) thin films on Si single crystal (001)si surface. The model predicts all the four previously reported orientation relationships between C49 and Si substrate based on the actual atom matching across the interface and the basic crystallographic data only. The model has strong potential to be used to develop new thin film materials. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A study is reported on the deactivation of hydroprocessing catalysts and their reactivation by the removal of coke and metal foulants. The literature on hydrotreating catalyst deactivation by coke and metals deposition, the environmental problems associated with spent catalyst disposal, and its reactivation/rejuvenation process were reviewed. Experimental studies on catalyst deactivation involved problem analysis in industrial hydroprocessing operations, through characterization of the spent catalyst, and laboratory coking studies. A comparison was made between the characteristics of spent catalysts from fixed bed and ebullating bed residue hydroprocessing reactor units and the catalyst deactivation pattern in both types of reactor systems was examined. In the laboratory the nature of initial coke deposited on the catalyst surface and its role on catalyst deactivation were studied. The influence of initial coke on catalyst surface area and porosity was significant. Both catalyst acidity and feedstock quality had a remarkable influence on the amount and the nature of the initial coke. The hydroenitrogenation function (HDN) of the catalyst was found to be deactivated more rapidly by the initial coke than the hydrodesulphurization function (HDS). In decoking experiments, special attention was paid to the initial conditions of coke combustion, since the early stages of contact between the coke on the spent catalyst surface and the oxygen are crucial in the decoking process. An increase in initial combustion temperature above 440oC and the oxygen content of the regeneration gas above 5% vanadium led to considerable sintering of the catalyst. At temperatures above 700oC there was a substantial loss of molybdenum from the catalyst, and phase transformations in the alumina support. The preferred leaching route (coked vs decoked form of spent catalyst) and a comparison of different reagents (i.e., oxalic acid and tartaric acid) and promoters (i.e., Hydrogen Peroxide and Ferric Nitrate) for better selectivity in removing the major foulant (vanadium), characterization and performance evaluation of the treated catalysts and modelling of the leaching process were addressed in spent catalyst rejuvenation studies. The surface area and pore volume increased substantially with increasing vanadium extraction from the spent catalyst; the HDS activity showed a parallel increase. The selectivity for leaching of vanadium deposits was better, and activity recovery was higher, for catalyst rejuvenated by metal leaching prior to decoking.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An investigation was undertaken to study the effect of poor curing simulating hot climatic conditions and remedies on the durability of steel in concrete. Three different curing environments were used i.e. (1) Saturated Ca(OH)2 solution at 20°C, (2) Saturated Ca(OH)2 solution at 50°C and (3) Air at 50°C at 30% relative humidity. The third curing condition corresponding to the temperature and relative humidity typical of Middle Eastern Countries. The nature of the hardened cement paste matrix, cured under the above conditions was studied by means of Mercury Intrusion Porosimetry for measuring pore size distribution. The results were represented as total pore volume and initial pore entry diameter. The Scanning Electron Microscope was used to look at morphological changes during hydration, which were compared to the Mercury Intrusion Porosimetry results. X-ray defraction and Differential Thermal Analysis techniques were also employed for looking at any phase transformations. Polymer impregnation was used to reduce the porosity of the hardened cement pastes, especially in the case of the poorly cured samples. Carbonation rates of unimpregnated and impregnated cements were determined. Chloride diffusion studies were also undertaken to establish the effect of polymer impregnation and blending of the cements. Finally the corrosion behaviour of embedded steel bars was determined by the technique of Linear Polarisation. The steel was embedded in both untreated and polymer impregnated hardened cement pastes placed in either a solution containing NaCl or an environmental cabinet which provided carbonation at 40°C and 50% relative humidity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The first demonstration of heterogeneous catalysis within an oscillatory baffled flow reactor (OBR) is reported, exemplified by the solid acid catalysed esterification of organic acids, an important prototypical reaction for fine chemicals and biofuel synthesis. Suspension of a PrSOH-SBA-15 catalyst powder is readily achieved within the OBR under an oscillatory flow, facilitating the continuous esterification of hexanoic acid. Excellent semi-quantitative agreement is obtained between OBR and conventional stirred batch reaction kinetics, demonstrating efficient mixing, and highlighting the potential of OBRs for continuous, heterogeneously catalysed liquid phase transformations. Kinetic analysis highlights acid chain length (i.e. steric factors) as a key predictor of activity. Continuous esterification offers improved ester yields compared with batch operation, due to the removal of water by-product from the catalyst, evidencing the versatility of the OBR for heterogeneous flow chemistry and potential role as a new clean catalytic technology. © The Royal Society of Chemistry 2013.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aluminide diffusion coatings are frequently employed to enhance the oxidation resistance of nickel base superalloys. However, there is a concern that the presence of an aluminide coating could influence the properties of the coated superalloy, especially in respect of fatigue behaviour. To understand the nature of the effects of surface coatings on the fatigue properties of superalloys, an understanding of microstructural development within both the coating and the coating/substrate interfacial zone during high temperature fatigue testing is necessary. This paper is concerned with microstructural changes in aluminide diffusion coatings on single crystal γ′ strengthened superalloy substrates during the course of high temperature fatigue testing. The 'edge on' transmission electron microscopy technique is employed to study cross-sections of two stage (aluminization plus diffusion treatment) coated superalloy samples. The paper examines the degradation of the coating produced by phase transformations induced by loss of aluminum from the coating and/or aging of the coating. Aluminum removal both by interdiffusion with the substrate and by oxidation of the coating surface is considered. Microstructural development in the portion of the substrate influenced by interdiffusion with the coating is also discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Shape memory alloys are a special class of metals that can undergo large deformation yet still be able to recover their original shape through the mechanism of phase transformations. However, when they experience plastic slip, their ability to recover their original shape is reduced. This is due to the presence of dislocations generated by plastic flow that interfere with shape recovery through the shape memory effect and the superelastic effect. A one-dimensional model that captures the coupling between shape memory effect, the superelastic effect and plastic deformation is introduced. The shape memory alloy is assumed to have only 3 phases: austenite, positive variant martensite and negative variant martensite. If the SMA flows plastically, each phase will exhibit a dislocation field that permanently prevents a portion of it from being transformed back to other phases. Hence, less of the phase is available for subsequent phase transformations. A constitutive model was developed to depict this phenomena and simulate the effect of plasticity on both the shape memory effect and the superelastic effect in shape memory alloys. In addition, experimental tests were conducted to characterize the phenomenon in shape memory wire and superelastic wire. ^ The constitutive model was then implemented in within a finite element context as UMAT (User MATerial Subroutine) for the commercial finite element package ABAQUS. The model is phenomenological in nature and is based on the construction of stress-temperature phase diagram. ^ The model has been shown to be capable of capturing the qualitative and quantitative aspects of the coupling between plasticity and the shape memory effect and plasticity and the super elastic effect within acceptable limits. As a verification case a simple truss structure was built and tested and then simulated using the FEA constitutive model. The results where found to be close the experimental data. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To better understand high pressure behavior of solids, both silicates and oxides have been investigated to clarify the high pressure melting, phase transformations and thermal parameters as well as their size dependences, both theoretically and experimentally. ^ To judge the precision of data determined experimentally, the reliabilities of different high pressure techniques have been discussed. A thermodynamic model has been developed and demonstrated to be able to closely reproduce the melting of solids by comparison between results calculated and data obtained experimentally, including metals (Al, Ni and Pt), Silicates (Mg3Al 2Si3O12 and CaMgSi2O6), Halides (NaCl, CsCl and LiF) and Oxides (MgO, FeO and Al2O3). The melting data obtained have been discussed to address the dynamics of the Earth's interior. ^ Results obtained with Raman spectroscopy and x-ray diffraction show that solids including silicates (andradite and pyrope) and oxides (CeO2 and TiO2) undergo a series of pressure-induced phase transformations. The effects of particle size under high pressures have been investigated. The results obtained indicate that the reduction of particle size leads to the enhancement of the bulk modulus and a significant decrease of transition pressure in TiO2 (rutile) and CeO2. The pressure-induced amorphization in anatase also results from the size effects. ^ Combining the data obtained with global seismic tomography, the physics and chemistry of the Earth's mantle and the dynamics of the core-mantle interaction have been discussed. The high pressure phases of Al3+- and Fe3+-bearing minerals play important roles in the dynamics of the lower mantle. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this study was to develop a model to predict transport and fate of gasoline components of environmental concern in the Miami River by mathematically simulating the movement of dissolved benzene, toluene, xylene (BTX), and methyl-tertiary-butyl ether (MTBE) occurring from minor gasoline spills in the inter-tidal zone of the river. Computer codes were based on mathematical algorithms that acknowledge the role of advective and dispersive physical phenomena along the river and prevailing phase transformations of BTX and MTBE. Phase transformations included volatilization and settling. ^ The model used a finite-difference scheme of steady-state conditions, with a set of numerical equations that was solved by two numerical methods: Gauss-Seidel and Jacobi iterations. A numerical validation process was conducted by comparing the results from both methods with analytical and numerical reference solutions. Since similar trends were achieved after the numerical validation process, it was concluded that the computer codes algorithmically were correct. The Gauss-Seidel iteration yielded at a faster convergence rate than the Jacobi iteration. Hence, the mathematical code was selected to further develop the computer program and software. The model was then analyzed for its sensitivity. It was found that the model was very sensitive to wind speed but not to sediment settling velocity. ^ A computer software was developed with the model code embedded. The software was provided with two major user-friendly visualized forms, one to interface with the database files and the other to execute and present the graphical and tabulated results. For all predicted concentrations of BTX and MTBE, the maximum concentrations were over an order of magnitude lower than current drinking water standards. It should be pointed out, however, that smaller concentrations than the latter reported standards and values, although not harmful to humans, may be very harmful to organisms of the trophic levels of the Miami River ecosystem and associated waters. This computer model can be used for the rapid assessment and management of the effects of minor gasoline spills on inter-tidal riverine water quality. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hydrogen has been considered as a potentially efficient and environmentally friendly alternative energy solution. However, one of the most important scientific and technical challenges that the "hydrogen economy" faces is the development of safe and economically viable on-board hydrogen storage for fuel cell applications, especially to the transportation sector. Ammonia borane (BH3NH 3), a solid state hydrogen storage material, possesses exceptionally high hydrogen content (19.6 wt%).However, a fairly high temperature is required to release all the hydrogen atoms, along with the emission of toxic borazine. Recently research interests are focusing on the improvement of H2 discharge from ammonia borane (AB) including lowering the dehydrogenation temperature and enhancing hydrogen release rate using different techniques. Till now the detailed information about the bonding characteristics of AB is not sufficient to understand details about its phases and structures. ^ Elemental substitution of ammonia borane produces metal amidoboranes. Introduction of metal atoms to the ammonia borane structure may alter the bonding characteristics. Lithium amidoborane is synthesized by ball milling of ammonia borane and lithium hydride. High pressure study of molecular crystal provides unique insight into the intermolecular bonding forces and phase stability. During this dissertation, Raman spectroscopic study of lithium amidoborane has been carried out at high pressure in a diamond anvil cell. It has been identified that there is no dihydrogen bond in the lithium amidoborane structure, whereas dihydrogen bond is the characteristic bond of the parent compound ammonia borane. It has also been identified that the B-H bond becomes weaker, whereas B-N and N-H bonds become stronger than those in the parent compound ammonia borane. At high pressure up to 15 GPa, Raman spectroscopic study indicates two phase transformations of lithium amidoborane, whereas synchrotron X-ray diffraction data indicates only one phase transformation of this material. ^ Pressure and temperature has a significant effect on the structural stability of ammonia borane. This dissertation explored the phase transformation behavior of ammonia borane at high pressure and low temperature using in situ Raman spectroscopy. The P-T phase boundary between the tetragonal (I4mm) and orthorhombic (Pmn21) phases of ammonia borane has been determined. The transition has a positive Clapeyron slope which indicates the transition is of exothermic in nature. Influence of nanoconfinemment on the I4mm to Pmn2 1 phase transition of ammonia borane was also investigated. Mesoporus silica scaffolds SBA-15 with pore size of ~8 nm and MCM-41 with pore size of 2.1-2.7 nm, were used to nanoconfine ammonia borane. During cooling down, the I4mm to Pmn21 phase transition was not observed in MCM-41 nanoconfined ammonia borane, whereas the SBA-15 nanocondfined ammonia borane shows the phase transition at ~195 K. Four new phases of ammonia borane were also identified at high pressure up to 15 GPa and low temperature down to 90 K.^