990 resultados para PHASE DIAGRAM
Resumo:
We investigate nematic wetting and filling transitions of crenellated surfaces (rectangular gratings) by numerical minimization of the Landau-de Gennes free energy as a function of the anchoring strength, for a wide range of the surface geometrical parameters: depth, width, and separation of the crenels. We have found a rich phase behavior that depends in detail on the combination of the surface parameters. By comparison to simple fluids, which undergo a continuous filling or unbending transition, where the surface changes from a dry to a filled state, followed by a wetting or unbinding transition, where the thickness of the adsorbed fluid becomes macroscopic and the interface unbinds from the surface, nematics at crenellated surfaces reveal an intriguingly rich behavior: in shallow crenels only wetting is observed, while in deep crenels, only filling transitions occur; for intermediate surface geometrical parameters, a new class of filled states is found, characterized by bent isotropic-nematic interfaces, which persist for surfaces structured on large scales, compared to the nematic correlation length. The global phase diagram displays two wet and four filled states, all separated by first-order transitions. For crenels in the intermediate regime re-entrant filling transitions driven by the anchoring strength are observed.
Resumo:
We consider a simple model consisting of particles with four bonding sites ("patches"), two of type A and two of type B, on the square lattice, and investigate its global phase behavior by simulations and theory. We set the interaction between B patches to zero and calculate the phase diagram as the ratio between the AB and the AA interactions, epsilon(AB)*, varies. In line with previous work, on three-dimensional off-lattice models, we show that the liquid-vapor phase diagram exhibits a re-entrant or "pinched" shape for the same range of epsilon(AB)*, suggesting that the ratio of the energy scales - and the corresponding empty fluid regime - is independent of the dimensionality of the system and of the lattice structure. In addition, the model exhibits an order-disorder transition that is ferromagnetic in the re-entrant regime. The use of low-dimensional lattice models allows the simulation of sufficiently large systems to establish the nature of the liquid-vapor critical points and to describe the structure of the liquid phase in the empty fluid regime, where the size of the "voids" increases as the temperature decreases. We have found that the liquid-vapor critical point is in the 2D Ising universality class, with a scaling region that decreases rapidly as the temperature decreases. The results of simulations and theoretical analysis suggest that the line of order-disorder transitions intersects the condensation line at a multi-critical point at zero temperature and density, for patchy particle models with a re-entrant, empty fluid, regime. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3657406]
Resumo:
The phase diagram of a simple model with two patches of type A and ten patches of type B (2A10B) on the face centred cubic lattice has been calculated by simulations and theory. Assuming that there is no interaction between the B patches the behavior of the system can be described in terms of the ratio of the AB and AA interactions, r. Our results show that, similarly to what happens for related off-lattice and two-dimensional lattice models, the liquid-vapor phase equilibria exhibit reentrant behavior for some values of the interaction parameters. However, for the model studied here the liquid-vapor phase equilibria occur for values of r lower than 1/3, a threshold value which was previously thought to be universal for 2AnB models. In addition, the theory predicts that below r = 1/3 (and above a new condensation threshold which is < 1/3) the reentrant liquid-vapor equilibria are so extreme that it exhibits a closed loop with a lower critical point, a very unusual behavior in single-component systems. An order-disorder transition is also observed at higher densities than the liquid-vapor equilibria, which shows that the liquid-vapor reentrancy occurs in an equilibrium region of the phase diagram. These findings may have implications in the understanding of the condensation of dipolar hard spheres given the analogy between that system and the 2AnB models considered here. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4771591]
Resumo:
We consider a fluid of hard boomerangs, each composed of two hard spherocylinders joined at their ends at an angle Psi. The resulting particle is nonconvex and biaxial. The occurence of nematic order in such a system has been investigated using Straley's theory, which is a simplificaton of Onsager's second-virial treatment of long hard rods, and by bifurcation analysis. The excluded volume of two hard boomerangs has been approximated by the sum of excluded volumes of pairs of constituent spherocylinders, and the angle-dependent second-virial coefficient has been replaced by a low-order interpolating function. At the so-called Landau point, Psi(Landau)approximate to 107.4 degrees, the fluid undergoes a continuous transition from the isotropic to a biaxial nematic (B) phase. For Psi not equal Psi(Landau) ordering is via a first-order transition into a rod-like uniaxial nematic phase (N(+)) if Psi > Psi(Landau), or a plate-like uniaxial nematic (N(-)) phase if Psi < Psi(Landau). The B phase is separated from the N(+) and N(-) phases by two lines of continuous transitions meeting at the Landau point. This topology of the phase diagram is in agreement with previous studies of spheroplatelets and biaxial ellipsoids. We have checked the accuracy of our theory by performing numerical calculations of the angle-dependent second virial coefficient, which yields Psi(Landau)approximate to 110 degrees for very long rods, and Psi(Landau)approximate to 90 degrees for short rods. In the latter case, the I-N transitions occur at unphysically high packing fractions, reflecting the inappropriateness of the second-virial approximation in this limit.
Resumo:
When a mixture is confined, one of the phases can condense out. This condensate, which is otherwise metastable in the bulk, is stabilized by the presence of surfaces. In a sphere-plane geometry, routinely used in atomic force microscope and surface force apparatus, it, can form a bridge connecting the surfaces. The pressure drop in the bridge gives rise to additional long-range attractive forces between them. By minimizing the free energy of a binary mixture we obtain the force-distance curves as well as the structural phase diagram of the configuration with the bridge. Numerical results predict a discontinuous transition between the states with and without the bridge and linear force-distance curves with hysteresis. We also show that similar phenomenon can be observed in a number of different systems, e.g., liquid crystals and polymer mixtures. (C). 2004 American Institute of Physics.
Resumo:
We investigate the influence of strong directional, or bonding, interactions on the phase diagram of complex fluids, and in particular on the liquid-vapour critical point. To this end we revisit a simple model and theory for associating fluids which consist of spherical particles having a hard-core repulsion, complemented by three short-ranged attractive sites on the surface (sticky spots). Two of the spots are of type A and one is of type B; the interactions between each pair of spots have strengths [image omitted], [image omitted] and [image omitted]. The theory is applied over the whole range of bonding strengths and results are interpreted in terms of the equilibrium cluster structures of the coexisting phases. In systems where unlike sites do not interact (i.e. where [image omitted]), the critical point exists all the way to [image omitted]. By contrast, when [image omitted], there is no critical point below a certain finite value of [image omitted]. These somewhat surprising results are rationalised in terms of the different network structures of the two systems: two long AA chains are linked by one BB bond (X-junction) in the former case, and by one AB bond (Y-junction) in the latter. The vapour-liquid transition may then be viewed as the condensation of these junctions and we find that X-junctions condense for any attractive [image omitted] (i.e. for any fraction of BB bonds), whereas condensation of the Y-junctions requires that [image omitted] be above a finite threshold (i.e. there must be a finite fraction of AB bonds).
Resumo:
The phase diagram of a simple model with two patches of type A and ten patches of type B (2A10B) on the face centred cubic lattice has been calculated by simulations and theory. Assuming that there is no interaction between the B patches the behavior of the system can be described in terms of the ratio of the AB and AA interactions, r. Our results show that, similarly to what happens for related off-lattice and two-dimensional lattice models, the liquid-vapor phase equilibria exhibit reentrant behavior for some values of the interaction parameters. However, for the model studied here the liquid-vapor phase equilibria occur for values of r lower than 1/3, a threshold value which was previously thought to be universal for 2AnB models. In addition, the theory predicts that below r = 1/3 (and above a new condensation threshold which is < 1/3) the reentrant liquid-vapor equilibria are so extreme that it exhibits a closed loop with a lower critical point, a very unusual behavior in single-component systems. An order-disorder transition is also observed at higher densities than the liquid-vapor equilibria, which shows that the liquid-vapor reentrancy occurs in an equilibrium region of the phase diagram. These findings may have implications in the understanding of the condensation of dipolar hard spheres given the analogy between that system and the 2AnB models considered here.
Resumo:
We investigate the behavior of a patchy particle model close to a hard-wall via Monte Carlo simulation and density functional theory (DFT). Two DFT approaches, based on the homogeneous and inhomogeneous versions of Wertheim's first order perturbation theory for the association free energy are used. We evaluate, by simulation and theory, the equilibrium bulk phase diagram of the fluid and analyze the surface properties for two isochores, one of which is close to the liquid side of the gas-liquid coexistence curve. We find that the density profile near the wall crosses over from a typical high-temperature adsorption profile to a low-temperature desorption one, for the isochore close to coexistence. We relate this behavior to the properties of the bulk network liquid and find that the theoretical descriptions are reasonably accurate in this regime. At very low temperatures, however, an almost fully bonded network is formed, and the simulations reveal a second adsorption regime which is not captured by DFT. We trace this failure to the neglect of orientational correlations of the particles, which are found to exhibit surface induced orientational order in this regime.
Resumo:
We generalize Wertheim's first order perturbation theory to account for the effect in the thermodynamics of the self-assembly of rings characterized by two energy scales. The theory is applied to a lattice model of patchy particles and tested against Monte Carlo simulations on a fcc lattice. These particles have 2 patches of type A and 10 patches of type B, which may form bonds AA or AB that decrease the energy by epsilon(AA) and by epsilon(AB) = r epsilon(AA), respectively. The angle theta between the 2 A-patches on each particle is fixed at 601, 90 degrees or 120 degrees. For values of r below 1/2 and above a threshold r(th)(theta) the models exhibit a phase diagram with two critical points. Both theory and simulation predict that rth increases when theta decreases. We show that the mechanism that prevents phase separation for models with decreasing values of theta is related to the formation of loops containing AB bonds. Moreover, we show that by including the free energy of B-rings ( loops containing one AB bond), the theory describes the trends observed in the simulation results, but that for the lowest values of theta, the theoretical description deteriorates due to the increasing number of loops containing more than one AB bond.
Resumo:
We present a detailed analytical and numerical study of the avalanche distributions of the continuous damage fiber bundle model CDFBM . Linearly elastic fibers undergo a series of partial failure events which give rise to a gradual degradation of their stiffness. We show that the model reproduces a wide range of mechanical behaviors. We find that macroscopic hardening and plastic responses are characterized by avalanche distributions, which exhibit an algebraic decay with exponents between 5/2 and 2 different from those observed in mean-field fiber bundle models. We also derive analytically the phase diagram of a family of CDFBM which covers a large variety of potential avalanche size distributions. Our results provide a unified view of the statistics of breaking avalanches in fiber bundle models
Resumo:
Recent studies have indicated that gamma band oscillations participate in the temporal binding needed for the synchronization of cortical networks involved in short-term memory and attentional processes. To date, no study has explored the temporal dynamics of gamma band in the early stages of dementia. At baseline, gamma band analysis was performed in 29 cases with mild cognitive impairment (MCI) during the n-back task. Based on phase diagrams, multiple linear regression models were built to explore the relationship between the cognitive status and gamma oscillation changes over time. Individual measures of phase diagram complexity were made using fractal dimension values. After 1 year, all cases were assessed neuropsychologically using the same battery. A total of 16 MCI patients showed progressive cognitive decline (PMCI) and 13 remained stable (SMCI). When adjusted for gamma values at lag -2, and -3 ms, PMCI cases displayed significantly lower average changes in gamma values than SMCI cases both in detection and 2-back tasks. Gamma fractal dimension of PMCI cases displayed significantly higher gamma fractal dimension values compared to SMCI cases. This variable explained 11.8% of the cognitive variability in this series. Our data indicate that the progression of cognitive decline in MCI is associated with early deficits in temporal binding that occur during the activation of selective attention processes.
Resumo:
We work out a semiclassical theory of shot noise in ballistic n+-i-n+ semiconductor structures aiming at studying two fundamental physical correlations coming from Pauli exclusion principle and long-range Coulomb interaction. The theory provides a unifying scheme which, in addition to the current-voltage characteristics, describes the suppression of shot noise due to Pauli and Coulomb correlations in the whole range of system parameters and applied bias. The whole scenario is summarized by a phase diagram in the plane of two dimensionless variables related to the sample length and contact chemical potential. Here different regions of physical interest can be identified where only Coulomb or only Pauli correlations are active, or where both are present with different relevance. The predictions of the theory are proven to be fully corroborated by Monte Carlo simulations.
Resumo:
We present a continuum model for doped manganites which consist of two species of quantum spin-1 / 2 fermions interacting with classical spin fields. The phase structure at zero temperature turns out to be considerably rich: antiferromagnetic insulator, antiferromagnetic two band conducting, canted two band conducting, canted one band conducting, and ferromagnetic one band conducting phases are identified, all of them being stable against phase separation. There are also regions in the phase diagram where phase separation occurs
Resumo:
Spanning avalanches in the 3D Gaussian Random Field Ising Model (3D-GRFIM) with metastable dynamics at T=0 have been studied. Statistical analysis of the field values for which avalanches occur has enabled a Finite-Size Scaling (FSS) study of the avalanche density to be performed. Furthermore, a direct measurement of the geometrical properties of the avalanches has confirmed an earlier hypothesis that several types of spanning avalanches with two different fractal dimensions coexist at the critical point. We finally compare the phase diagram of the 3D-GRFIM with metastable dynamics with the same model in equilibrium at T=0.
Resumo:
The influence of vacancy concentration on the behavior of the three-dimensional random field Ising model with metastable dynamics is studied. We have focused our analysis on the number of spanning avalanches which allows us a clear determination of the critical line where the hysteresis loops change from continuous to discontinuous. By a detailed finite-size scaling analysis we determine the phase diagram and numerically estimate the critical exponents along the whole critical line. Finally, we discuss the origin of the curvature of the critical line at high vacancy concentration.