938 resultados para PHAGE DISPLAY LIBRARY
Resumo:
The demand for more pixels is beginning to be met as manufacturers increase the native resolution of projector chips. Tiling several projectors still offers a solution to augment the pixel capacity of a display. However, problems of color and illumination uniformity across projectors need to be addressed as well as the computer software required to drive such devices. We present the results obtained on a desktop-size tiled projector array of three D-ILA projectors sharing a common illumination source. A short throw lens (0.8:1) on each projector yields a 21-in. diagonal for each image tile; the composite image on a 3×1 array is 3840×1024 pixels with a resolution of about 80 dpi. The system preserves desktop resolution, is compact, and can fit in a normal room or laboratory. The projectors are mounted on precision six-axis positioners, which allow pixel level alignment. A fiber optic beamsplitting system and a single set of red, green, and blue dichroic filters are the key to color and illumination uniformity. The D-ILA chips inside each projector can be adjusted separately to set or change characteristics such as contrast, brightness, or gamma curves. The projectors were then matched carefully: photometric variations were corrected, leading to a seamless image. Photometric measurements were performed to characterize the display and are reported here. This system is driven by a small PC cluster fitted with graphics cards and running Linux. It can be scaled to accommodate an array of 2×3 or 3×3 projectors, thus increasing the number of pixels of the final image. Finally, we present current uses of the display in fields such as astrophysics and archaeology (remote sensing).
Resumo:
The mRNA differential display technique was used to compare mRNAs between normal mammary gland and turner-derived epithelial cells from female Sprague-Dawley rat mammary gland tumors induced by the heterocyclic amine 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and promoted by a high-fat diet (23.5% corn oil). Two genes, beta-casein and transferrin, were identified as differentially expressed. The expression of these genes was examined across a bank of rat mammary gland tumors derived from animals on a low-fat diet (5% corn oil) or the high-fat diet. Carcinomas had over a 10- and 50-fold lower expression of beta-casein and transferrin, respectively than normal mammary gland. In addition, carcinomas from animals on the high-fat diet showed on average a 5-fold higher expression of beta-casein, and transferrin than carcinomas from animals on the low-fat diet. The results indicate the process of mammary gland tumorigenesis alters the expression of certain genes in the mammary gland, and that the level of dietary fat further modulates the expression of these genes.
Resumo:
Polymerase chain reaction (PCR)-based differential display was used to screen for alterations in gene expression in the mesolimbic system of the human alcoholic brain. Total RNA was extracted from the nucleus accumbens of five alcoholic and five control brains. A selected subpopulation of mRNA was reverse-transcribed to cDNA and amplified by PCR. A differentially expressed cDNA fragment was recovered, cloned, and sequenced. Full sequence analysis of this 467 bp fragment revealed 98.2% homology with the human mitochondrial 12S rRNA gene. Dot-blot analysis showed increased expression of this gem in nucleus accumbens and hippocampus, but not in the superior frontal cortex, primary motor cortex, caudate, and pallidus/putamen In a total of eight human alcoholic brains, compared with seven control brains. A similar increased expression was observed by dot-blot analysis, using RNA from the cerebral cortex of rats chronically treated with alcohol vapor. Hybridization of a 16S rRNA oligonucleotide probe indicated that the expression of both rRNAs genes was significantly increased in nucleus accumbens. These results indicate that chronic alcohol consumption induces alteration in expression of mitochondrial genes in selected brain regions. The altered gene expression may reflect mitochondrial dysfunction In the alcohol-affected brain.
Resumo:
This paper develops an interactive approach for exploratory spatial data analysis. Measures of attribute similarity and spatial proximity are combined in a clustering model to support the identification of patterns in spatial information. Relationships between the developed clustering approach, spatial data mining and choropleth display are discussed. Analysis of property crime rates in Brisbane, Australia is presented. A surprising finding in this research is that there are substantial inconsistencies in standard choropleth display options found in two widely used commercial geographical information systems, both in terms of definition and performance. The comparative results demonstrate the usefulness and appeal of the developed approach in a geographical information system environment for exploratory spatial data analysis.
Resumo:
The technique of polymerase chain reaction (PCR) differential display was used to detect alterations in gene expression after chronic alcohol administration. Male Wistar rats were treated with ethanol vapor for 14 days. The cDNA generated from mRNA isolated from the hippocampi of ethanol-treated and control animals was compared by PCR differential display. A differentially expressed cDNA fragment was used to screen mRNA samples by Northern analysis. The level of a mRNA was significantly elevated (x 2.5) in the hippocampus, but not the cortex of alcohol-treated rats up to 48 hr after withdrawal. Sequence analysis of the cDNA fragment revealed an almost perfect homology to rat mitochondrial NADH dehydrogenase subunit 4 mRNA. The selective induction of this mRNA in alcohol-treated rat brain areas suggests altered metabolic processes and possible dysfunction of the mitochondria. The technique of PCR differential display may prove useful in further analysis of gene expression during alcohol dependence and withdrawal.
Resumo:
Plants have multiple potassium (K+) uptake and efflux mechanisms that are expressed throughout plant tissues to fulfill different physiological functions. Several different classes of K+ channels and carriers have been identified at the molecular level in plants. K+ transporters of the HKT1 superfamily have been cloned from wheat (Triticum aestivum), Arabidopsis, and Eucalyptus camaldulensis. The functional characteristics as well as the primary structure of these transporters are diverse with orthologues found in bacterial and fungal genomes. In this report, we provide a detailed characterization of the functional characteristics, as expressed in Xenopus laevis oocytes, of two cDNAs isolated from E. camaldulensis that encode proteins belonging to the HKT1 superfamily of K+/Na+ transporters. The transport of K+ in EcHKT-expressing oocytes is enhanced by Na+, but K+ was also transported in the absence of Na+. Na+ is transported in the absence of K+ as has been demonstrated for HKT1 and AtHKT1. Overall, the E. camaldulensis transporters show some similarities and differences in ionic selectivity to HKT1 and AtHKT1. One striking difference between HKT1 and EcHKT is the sensitivity to changes in the external osmolarity of the solution. Hypotonic solutions increased EcHKT induced currents in oocytes by 100% as compared with no increased current in HKT1 expressing or uninjected oocytes. These osmotically sensitive currents were not enhanced by voltage and may mediate water flux. The physiological function of these osmotically induced increases in currents may be related to the ecological niches that E. camaldulensis inhabits, which are periodically flooded. Therefore, the osmosensing function of EcHKT may provide this species with a competitive advantage in maintaining K+ homeostasis under certain conditions.
Resumo:
Several cystic fibrosis (CF) mouse models demonstrate an increased susceptibility to Pseudomonas aeruginosa lung infection, characterized by excessive inflammation and high rates of mortality. Here we developed a model of chronic P. aeruginosa lung disease in mice homozygous for the murine CF transmembrane conductance regulator G551D mutation that provides an excellent model for CF lung disease. After 3 days of infection with mucoid P. aeruginosa entrapped in agar beads, the G551D animals lost substantially more body weight than non-CF control animals and were less able to control the infection, harboring over 40-fold more bacteria in the lung. The airways of infected G551D animals contained altered concentrations of the inflammatory mediators tumor necrosis factor-alpha, KC/N51, and macrophage inflammatory protein-2 during the first 2 days of infection, suggesting that an ineffective inflammatory response is partly responsible for the clearance defect.
Resumo:
Dissertação de mestrado em Bioengenharia
Resumo:
Urease is an important virulence factor for Helicobacter pylori and is critical for bacterial colonization of the human gastric mucosa. Specific inhibition of urease activity has been proposed as a possible strategy to fight this bacteria which infects billions of individual throughout the world and can lead to severe pathological conditions in a limited number of cases. We have selected peptides which specifically bind and inhibit H. pylori urease from libraries of random peptides displayed on filamentous phage in the context of pIII coat protein. Screening of a highly diverse 25-mer combinatorial library and two newly constructed random 6-mer peptide libraries on solid phase H. pylori urease holoenzyme allowed the identification of two peptides, 24-mer TFLPQPRCSALLRYLSEDGVIVPS and 6-mer YDFYWW that can bind and inhibit the activity of urease purified from H. pylori. These two peptides were chemically synthesized and their inhibition constants (Ki) were found to be 47 microM for the 24-mer and 30 microM for the 6-mer peptide. Both peptides specifically inhibited the activity of H. pylori urease but not that of Bacillus pasteurii.
Resumo:
Urease is an important virulence factor for Helicobacter pylori and is critical for bacterial colonization of the human gastric mucosa. Specific inhibition of urease activity has been proposed as a possible strategy to fight this bacteria which infects billions of individual throughout the world and can lead to severe pathological conditions in a limited number of cases. We have selected peptides which specifically bind and inhibit H. pylori urease from libraries of random peptides displayed on filamentous phage in the context of pIII coat protein. Screening of a highly diverse 25-mer combinatorial library and two newly constructed random 6-mer peptide libraries on solid phase H. pylori urease holoenzyme allowed the identification of two peptides, 24-mer TFLPQPRCSALLRYLSEDGVIVPS and 6-mer YDFYWW that can bind and inhibit the activity of urease purified from H. pylori. These two peptides were chemically synthesized and their inhibition constants (Ki) were found to be 47 microM for the 24-mer and 30 microM for the 6-mer peptide. Both peptides specifically inhibited the activity of H. pylori urease but not that of Bacillus pasteurii.