970 resultados para PFTs(plant functional types)
Resumo:
Andean montane forests are one of the most diverse ecosystems on Earth, but are also highly vulnerable to climate change. Therefore, the link between plant distribution and ecosystem productivity is a critical point to investigate in these ecosystems. Are the patterns in productivity observed in montane forest due to species turnover along the elevational gradients? Methodological constraints keep this question unanswered. Also, despite their importance, belowground biomass remains poorly quantified and understood. I measured two plant functional traits in seedlings, root:shoot ratio and specific leaf area, to identify different strategies in growth and biomass allocation across elevations. A tradeoff in specific leaf area with elevation was found in only one species, and no generalized directional change was detected with elevations for root:shoot ratio. Lack of information for the ontogeny of the measured plant traits could confounding the analysis.
Mineral Nutrition Of Campos Rupestres Plant Species On Contrasting Nutrient-impoverished Soil Types.
Resumo:
In Brazil, the campos rupestres occur over the Brazilian shield, and are characterized by acidic nutrient-impoverished soils, which are particularly low in phosphorus (P). Despite recognition of the campos rupestres as a global biodiversity hotspot, little is known about the diversity of P-acquisition strategies and other aspects of plant mineral nutrition in this region. To explore nutrient-acquisition strategies and assess aspects of plant P nutrition, we measured leaf P and nitrogen (N) concentrations, characterized root morphology and determined the percentage arbuscular mycorrhizal (AM) colonization of 50 dominant species in six communities, representing a gradient of soil P availability. Leaf manganese (Mn) concentration was measured as a proxy for carboxylate-releasing strategies. Communities on the most P-impoverished soils had the highest proportion of nonmycorrhizal (NM) species, the lowest percentage of mycorrhizal colonization, and the greatest diversity of root specializations. The large spectrum of leaf P concentration and variation in root morphologies show high functional diversity for nutritional strategies. Higher leaf Mn concentrations were observed in NM compared with AM species, indicating that carboxylate-releasing P-mobilizing strategies are likely to be present in NM species. The soils of the campos rupestres are similar to the most P-impoverished soils in the world. The prevalence of NM strategies indicates a strong global functional convergence in plant mineral nutrition strategies among severely P-impoverished ecosystems.
Resumo:
The proton-pumping ATPase (H+-ATPase) of the plant plasma membrane is encoded by two major gene subfamilies. To characterize individual H+-ATPases, PMA2, an H+-ATPase isoform of tobacco (Nicotiana plumbaginifolia), was expressed in Saccharomyces cerevisiae and found to functionally replace the yeast H+-ATPase if the external pH was kept above 5.0 (A. de Kerchove d'Exaerde, P. Supply, J.P. Dufour, P. Bogaerts, D. Thinès, A. Goffeau, M. Boutry [1995] J Biol Chem 270: 23828–23837). In the present study we replaced the yeast H+-ATPase with PMA4, an H+-ATPase isoform from the second subfamily. Yeast expressing PMA4 grew at a pH as low as 4.0. This was correlated with a higher acidification of the external medium and an approximately 50% increase of ATPase activity compared with PMA2. Although both PMA2 and PMA4 had a similar pH optimum (6.6–6.8), the profile was different on the alkaline side. At pH 7.2 PMA2 kept more than 80% of the maximal activity, whereas that of PMA4 decreased to less than 40%. Both enzymes were stimulated up to 3-fold by 100 μg/mL lysophosphatidylcholine, but this stimulation vanished at a higher concentration in PMA4. These data demonstrate functional differences between two plant H+-ATPases expressed in the same heterologous host. Characterization of two PMA4 mutants selected to allow yeast growth at pH 3.0 revealed that mutations within the carboxy-terminal region of PMA4 could still improve the enzyme, resulting in better growth of yeast cells.
Resumo:
Pomegranate [Punica granatum (Punicaceae)] is characterized by having two types of flowers on the same tree: hermaphroditic bisexual flowers and functionally male flowers. This condition, defined as functional andromonoecy, can result in decreased yields resulting from the inability of male flowers to set fruit. Morphological and histological analyses of bisexual and male flowers were conducted using light and scanning electron microscopy (SEM) to characterize the different flower types observed in pomegranate plants and to better understand their developmental differences. Bisexual flowers had a discoid stigma covered with copious exudate, elongated stigmatic papillae, a single elongate style, and numerous stamens inserted on the inner wall of the calyx tube. Using fluorescence staining, high numbers of pollen tubes were observed growing through a central stylar canal. Ovules were numerous, elliptical, and anatropous. In contrast, male flowers had reduced female parts and exhibited shortened pistils of variable heights. Stigmatic papillae of male flowers had little exudate yet supported pollen germination. However, pollen tubes were rarely observed in styles. Ovules in male flowers were rudimentary and exhibited various stages of degeneration. Pollen from both types of flowers was of similar size, approximate to 20 mu m, and exhibited similar percent germination using in vitro germination assays. Pollen germination was strongly influenced by temperature. Maximal germination (greater than 74%) was obtained at 25 and 35 degrees C; pollen germination was significantly lower at 15 degrees C (58%) and 5 degrees C (10%).
Resumo:
Microsatellites and gene-derived markers are still underrepresented in the core molecular linkage map of common bean compared to other types of markers. In order to increase the density of the core map, a set of new markers were developed and mapped onto the RIL population derived from the `BAT93` x `Jalo EEP558` cross. The EST-SSR markers were first characterized using a set of 24 bean inbred lines. On average, the polymorphism information content was 0.40 and the mean number of alleles per locus was 2.7. In addition, AFLP and RGA markers based on the NBS-profiling method were developed and a subset of the mapped RGA was sequenced. With the integration of 282 new markers into the common bean core map, we were able to place markers with putative known function in some existing gaps including regions with QTL for resistance to anthracnose and rust. The distribution of the markers over 11 linkage groups is discussed and a newer version of the common bean core linkage map is proposed.
Resumo:
A series of experiments were conducted in drought-prone northeast Thailand to examine the magnitude of yield responses of diverse genotypes to drought stress environments and to identify traits that may confer drought resistance to rainfed lowland rice. One hundred and twenty eight genotypes were grown under non-stress and four different types of drought stress conditions. Under severe drought conditions, the maintenance of PWP of genotypes played a significant role in determining final grain yield. Because of their smaller plant size (lower total dry matter at anthesis) genotypes that extracted less soil water during the early stages of the drought period, tended to maintain higher PWP and had a higher fertile panicle percentage, filled grain percentage and final grain yield than other genotypes. PWP was correlated with delay in flowering (r = -0.387) indicating that the latter could be used as a measure of water potential under stress. Genotypes with well-developed root systems extracted water too rapidly and experienced severe water stress at flowering. RPR which showed smaller coefficient of variation was more useful than root mass density in identifying genotypes with large root system. Under less severe and prolonged drought conditions, genotypes that could achieve higher plant dry matter at anthesis were desirable. They had less delay in flowering, higher grain yield and higher drought response index, indicating the importance of ability to grow during the prolonged stress period. Other shoot characters (osmotic potential, leaf temperature, leaf rolling, leaf death) had little effect on grain yield under different drought conditions. This was associated with a lack of genetic variation and difficulty in estimating trait values precisely. Under mild stress conditions (yield loss less than 50%), there was no significant relationship between the measured drought characters and grain yield. Under these mild drought conditions, yield is determined more by yield potential and phenotype than by drought resistant mechanisms per se. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Functional genomics is the systematic study of genome-wide effects of gene expression on organism growth and development with the ultimate aim of understanding how networks of genes influence traits. Here, we use a dynamic biophysical cropping systems model (APSIM-Sorg) to generate a state space of genotype performance based on 15 genes controlling four adaptive traits and then search this spice using a quantitative genetics model of a plant breeding program (QU-GENE) to simulate recurrent selection. Complex epistatic and gene X environment effects were generated for yield even though gene action at the trait level had been defined as simple additive effects. Given alternative breeding strategies that restricted either the cultivar maturity type or the drought environment type, the positive (+) alleles for 15 genes associated with the four adaptive traits were accumulated at different rates over cycles of selection. While early maturing genotypes were favored in the Severe-Terminal drought environment type, late genotypes were favored in the Mild-Terminal and Midseason drought environment types. In the Severe-Terminal environment, there was an interaction of the stay-green (SG) trait with other traits: Selection for + alleles of the SG genes was delayed until + alleles for genes associated with the transpiration efficiency and osmotic adjustment traits had been fixed. Given limitations in our current understanding of trait interaction and genetic control, the results are not conclusive. However, they demonstrate how the per se complexity of gene X gene X environment interactions will challenge the application of genomics and marker-assisted selection in crop improvement for dryland adaptation.
Resumo:
Dissertation presented to obtain the Ph.D degree in Molecular Biology
Resumo:
Understanding the distribution and composition of species assemblages and being able to predict them in space and time are highly important tasks io investigate the fate of biodiversity in the current global changes context. Species distribution models are tools that have proven useful to predict the potential distribution of species by relating their occurrences to environmental variables. Species assemblages can then be predicted by combining the prediction of individual species models. In the first part of my thesis, I tested the importance of new environmental predictors to improve species distribution prediction. I showed that edaphic variables, above all soil pH and nitrogen content could be important in species distribution models. In a second chapter, I tested the influence of different resolution of predictors on the predictive ability of species distribution models. I showed that fine resolution predictors could ameliorate the models for some species by giving a better estimation of the micro-topographic condition that species tolerate, but that fine resolution predictors for climatic factors still need to be ameliorated. The second goal of my thesis was to test the ability of empirical models to predict species assemblages' characteristics such as species richness or functional attributes. I showed that species richness could be modelled efficiently and that the resulting prediction gave a more realistic estimate of the number of species than when obtaining it by stacking outputs of single species distribution models. Regarding the prediction of functional characteristics (plant height, leaf surface, seed mass) of plant assemblages, mean and extreme values of functional traits were better predictable than indices reflecting the diversity of traits in the community. This approach proved interesting to understand which environmental conditions influence particular aspects of the vegetation functioning. It could also be useful to predict climate change impacts on the vegetation. In the last part of my thesis, I studied the capacity of stacked species distribution models to predict the plant assemblages. I showed that this method tended to over-predict the number of species and that the composition of the community was not predicted exactly either. Finally, I combined the results of macro- ecological models obtained in the preceding chapters with stacked species distribution models and showed that this approach reduced significantly the number of species predicted and that the prediction of the composition is also ameliorated in some cases. These results showed that this method is promising. It needs now to be tested on further data sets. - Comprendre la manière dont les plantes se répartissent dans l'environnement et s'organisent en communauté est une question primordiale dans le contexte actuel de changements globaux. Cette connaissance peut nous aider à sauvegarder la diversité des espèces et les écosystèmes. Des méthodes statistiques nous permettent de prédire la distribution des espèces de plantes dans l'espace géographique et dans le temps. Ces modèles de distribution d'espèces, relient les occurrences d'une espèce avec des variables environnementales pour décrire sa distribution potentielle. Cette méthode a fait ses preuves pour ce qui est de la prédiction d'espèces individuelles. Plus récemment plusieurs tentatives de cumul de modèles d'espèces individuelles ont été réalisées afin de prédire la composition des communautés végétales. Le premier objectif de mon travail est d'améliorer les modèles de distribution en testant l'importance de nouvelles variables prédictives. Parmi différentes variables édaphiques, le pH et la teneur en azote du sol se sont avérés des facteurs non négligeables pour prédire la distribution des plantes. Je démontre aussi dans un second chapitre que les prédicteurs environnementaux à fine résolution permettent de refléter les conditions micro-topographiques subies par les plantes mais qu'ils doivent encore être améliorés avant de pouvoir être employés de manière efficace dans les modèles. Le deuxième objectif de ce travail consistait à étudier le développement de modèles prédictifs pour des attributs des communautés végétales tels que, par exemple, la richesse en espèces rencontrée à chaque point. Je démontre qu'il est possible de prédire par ce biais des valeurs de richesse spécifiques plus réalistes qu'en sommant les prédictions obtenues précédemment pour des espèces individuelles. J'ai également prédit dans l'espace et dans le temps des caractéristiques de la végétation telles que sa hauteur moyenne, minimale et maximale. Cette approche peut être utile pour comprendre quels facteurs environnementaux promeuvent différents types de végétation ainsi que pour évaluer les changements à attendre au niveau de la végétation dans le futur sous différents régimes de changements climatiques. Dans une troisième partie de ma thèse, j'ai exploré la possibilité de prédire les assemblages de plantes premièrement en cumulant les prédictions obtenues à partir de modèles individuels pour chaque espèce. Cette méthode a le défaut de prédire trop d'espèces par rapport à ce qui est observé en réalité. J'ai finalement employé le modèle de richesse en espèce développé précédemment pour contraindre les résultats du modèle d'assemblage de plantes. Cela a permis l'amélioration des modèles en réduisant la sur-prédiction et en améliorant la prédiction de la composition en espèces. Cette méthode semble prometteuse mais de nouveaux tests sont nécessaires pour bien évaluer ses capacités.
Resumo:
The primary function of secondary plant metabolites is thought to be defence against herbivores. The frequent occurrence of these same noxious compounds in floral nectar, which functions primarily to attract pollinators, has been seen as paradoxical. Although these compounds may have an adaptive purpose in nectar, they may also occur as a nonadaptive consequence of chemical defence in other plant parts. If nectar chemistry reflects physiological constraints or passive leakage from other tissues, we expect that the identity and relative concentration of nectar cardenolides to be correlated with those of other plant parts; in contrast, discordant distributions of compounds in nectar and other tissues may suggest adaptive roles in nectar. We compared the concentrations and identities of cardenolides in the nectar, leaves and flowers of 12 species from a monophyletic clade of Asclepias. To measure putative toxicity of nectar cardenolides, we then examined the effects of a standard cardenolide (digoxin) on the behaviour of bumblebees, a common generalist pollinator of Asclepias. We found that the average cardenolide concentrations in nectar, leaves and flowers of the 12 Asclepias species were positively correlated as predicted by nonadaptive hypotheses. However, significant differences in the identities and concentrations of individual cardenolides between nectar and leaves suggest that the production or allocation of cardenolides may be independently regulated at each plant part. In addition, cardenolide concentrations in leaves and nectar exhibited no phylogenetic signal. Surprisingly, bumblebees did not demonstrate an aversion to digoxin-rich nectar, which may indicate that nectar cardenolides have little effect on pollination. Although the idea that discordant patterns of secondary metabolites across tissue types may signal adaptive functions is attractive, there is evidence to suggest constraint contributes to nectar secondary chemistry. Further work testing the ecological impacts of such patterns will be critical in determining the functional significance of nectar cardenolides
Resumo:
Pollination syndromes involve convergent evolution towards phenotypes composed of specific scents, colours or floral morphologies that attract or restrict pollinator access to reward. How these traits might influence the distributions of plant species in interaction with pollinators has rarely been investigated. We sampled 870 vegetation plots in the western Swiss Alps and classified the plant species into seven blossom types according to their floral morphology (wind, disk, funnel, tube, bilabiate, head or brush). We investigated the environmental features of plots with functional diversity (FD) lower than expected by chance alone to detect potential pollination filtering and related the proportions of the seven blossom types to a combination of environmental descriptors. From these results, we inferred the potential effect of the pollinator on the spatial distribution of plant species. The vegetation plots with significantly lower FD of blossom types than expected by chance were found at higher altitudes, and the proportions of blossom types were strongly patterned along the same gradient. These results support a biotic filtering effect on plant species assemblages through pollination: disk blossoms became dominant at higher altitudes, resulting in a lower FD. In harsh conditions at high altitudes, pollinators usually decrease in activity, and the openness of the disk blossom grants access to any available pollinator. Inversely, bilabiate blossoms, which are mostly pollinated by bees, were more abundant at lower elevations, which are characterised by greater abundance and diversity of bees. Generalisation through openness of the blossom could be advantageous at high elevations, while specialisation could be a successful alternative strategy at lower elevations. The approach used in this study is purely correlative, and further investigations should be conducted to infer the nature of the causal relationship between plant and pollinator distributions.
Resumo:
The paper argues that a functional reduction of ordinary psychology to neuropsychology is possible by means of constructing fine-grained functional, mental sub-types that are coextensive with neuropsychological types. We establish this claim by means of considering as examples the cases of the disconnection syndrome and schizophrenia. We point out that the result is a conservative reduction, vindicating the scientific quality of the mental types of ordinary psychology by systematically linking them with neuroscience. That procedure of conservative reduction by means of functional sub-types is in principle repeatable down to molecular neuroscience.
Resumo:
We investigated the ecogeographic characteristics of 118 Swiss plant species listed as those deserving highest conservation priority in a national conservation guide and classified them into the seven Rabinowitz' rarity types, taking geographic distribution, habitat rarity and local population size into account. Our analysis revealed that species with high conservation priority in Switzerland mostly have a very restricted geographic distribution in Switzerland and generally occur in rare habitats, but do not necessarily constitute small populations and are generally not endemics on a global scale. Moreover, species that are geographically very restricted on a regional scale are not generally restricted on a global scale. By analysing relationships between rarity and IUCN extinction risks for Switzerland, we demonstrated that species with the highest risk of extinction are those with the most restricted geographic distribution; whereas species with lower risk of extinction (but still high conservation priority) include many regional endemics. Habitat rarity and local population size appeared to be of minor importance for the assessment of extinction risk in Switzerland, but the total number of fulfilled rarity criteria still correlated positively with the severity of extinction risk. Our classification is the first preliminary assessment of the relative importance of each rarity type among endangered plant species of the Swiss flora and our results underline the need to distinguish between a regional and a global responsibility for the conservation of rare and endangered species.