968 resultados para PCR multiplex
Resumo:
A fast, sensitive and cost-effective multiplex-PCR assay for Mycobacterium tuberculosis complex (MTC) and Mycobacterium avium (M. avium) identification for routine diagnosis was evaluated. A total of 158 isolates of mycobacteria from 448 clinical specimens from patients with symptoms of mycobacterial disease were analyzed. By conventional biochemical methods 151 isolates were identified as M. tuberculosis, five as M. avium and two as Mycobacterium chelonae (M. chelonae). Mycolic acid patterns confirmed these results. Multiplex-PCR detected only IS6110 in isolates identified as MTC, and IS1245 was found only in the M. avium isolates. The method applied to isolates from two patients, identified by conventional methods and mycolic acid analysis, one as M. avium and other as M. chelonae, resulted positive for IS6110, suggesting co-infection with M. tuberculosis. These patients were successfully submitted to tuberculosis treatment. The multiplex-PCR method may offer expeditious identification of MTC and M. avium, which may minimize risks for active transmission of these organisms and provide useful treatment information.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Financial support: CNPq and Pasteur Institute of São Paulo
Resumo:
BACKGROUND: Polymerase chain reaction (PCR) is a sensitive tool for detection of respiratory picornaviruses. However, the clinical relevance of picornavirus detection by PCR is unclear. Immunofluorescence (IF), widely used to detect other respiratory viruses, has recently been introduced as a promising detection method for respiratory picornaviruses. OBJECTIVES: To compare the clinical manifestations of respiratory picornavirus infections detected by IF with those of respiratory picornavirus infections detected by xTAG multiplex PCR in hospitalized children. STUDY DESIGN: During a 1-year period, nasopharyngeal aspirates (NPA) from all children hospitalized due to an acute respiratory infection were prospectively analyzed by IF. All respiratory picornavirus positive IF samples and 100 IF negative samples were further tested with xTAG multiplex PCR. After exclusion of children with co-morbidities and viral co-infections, monoinfections with respiratory picornaviruses were detected in 108 NPA of 108 otherwise healthy children by IF and/or PCR. We compared group 1 children (IF and PCR positive, n=84) with group 2 children (IF negative and PCR positive, n=24) with regard to clinical manifestations of the infection. RESULTS: Wheezy bronchitis was diagnosed more often in group 1 than in group 2 (71% vs. 46%, p=0.028). In contrast, group 2 patients were diagnosed more frequently with pneumonia (17% vs. 6%, p=0.014) accompanied by higher levels of C-reactive protein (46mg/l vs. 11mg/l, p=0.009). CONCLUSIONS: Picornavirus detection by IF in children with acute respiratory infection is associated with the clinical presentation of wheezy bronchitis. The finding of a more frequent diagnosis of pneumonia in picornavirus PCR positive but IF negative children warrants further investigation.
Resumo:
Typing of Clostridium perfringens strains by PCR-based determination of toxin genes proved to be a reliable method for diagnosis of enterotoxaemia in various animal species. We report the establishment and validation of three real-time fluorogenic (TaqMan) multiplex PCRs for the detection of C. perfringens alpha-, beta-, beta2-, epsilon-, entero- and iota-toxin genes. The composition of the PCRs was chosen with regard to robustness of the assays and in order to increase sensitivity compared to the conventional simplex PCRs. The combination of probe dyes selected for the real-time assays (FAM/TAMRA, Cy-5/BHQ-2 and VIC/TAMRA) as well as the designation of the chromosome-borne alpha-toxin as internal positive control allowed the creation of highly specific and sensitive, as well as time and cost effective PCRs. One hundred and three strains of C. perfringens isolated in Switzerland derived from clinical or suspected cases of enterotoxaemia in 10 different animal species were tested. The toxin genotypes were in agreement in both the conventional PCRs and the newly designed multiplex PCRs. Furthermore, the real-time PCR carried out as simplex allows to quantitate the copy numbers of plasmid-borne toxin genes in relation to the chromosomally located alpha-toxin gene.
Resumo:
Early detection of bloodstream infections (BSI) is crucial in the clinical setting. Blood culture remains the gold standard for diagnosing BSI. Molecular diagnostic tools can contribute to a more rapid diagnosis in septic patients. Here, a multiplex real-time PCR-based assay for rapid detection of 25 clinically important pathogens directly from whole blood in <6 h is presented. Minimal analytical sensitivity was determined by hit rate analysis from 20 independent experiments. At a concentration of 3 CFU/ml a hit rate of 50% was obtained for E. aerogenes and 100% for S. marcescens, E. coli, P. mirabilis, P. aeruginosa, and A. fumigatus. The hit rate for C. glabrata was 75% at 30 CFU/ml. Comparing PCR identification results with conventional microbiology for 1,548 clinical isolates yielded an overall specificity of 98.8%. The analytical specificity in 102 healthy blood donors was 100%. Although further evaluation is warranted, our assay holds promise for more rapid pathogen identification in clinical sepsis.
Resumo:
The reliable quantification of gene copy number variations is a precondition for future investigations regarding their functional relevance. To date, there is no generally accepted gold standard method for copy number quantification, and methods in current use have given inconsistent results in selected cohorts. In this study, we compare two methods for copy number quantification. beta-defensin gene copy numbers were determined in parallel in 80 genomic DNA samples by real-time PCR and multiplex ligation-dependent probe amplification (MLPA). The pyrosequencing-based paralog ratio test (PPRT) was used as a standard of comparison in 79 out of 80 samples. Realtime PCR and MPLA results confirmed concordant DEFB4, DEFB103A, and DEFB104A copy numbers within samples. These two methods showed identical results in 32 out of 80 samples; 29 of these 32 samples comprised four or fewer copies. The coefficient of variation of MLPA is lower compared with PCR. In addition, the consistency between MLPA and PPRT is higher than either PCR/MLPA or PCR/PPRT consistency. In summary, these results suggest that MLPA is superior to real-time PCR in beta-defensin copy number quantification.
Resumo:
BACKGROUND: Sequencing based mutation screening assays of genes encompassing large numbers of exons could be substantially optimized by multiplex PCR, which enables simultaneous amplification of many targets in one reaction. In the present study, a multiplex PCR protocol originally developed for fragment analysis was evaluated for sequencing based mutation screening of the ornithine transcarbamylase (OTC) and the medium-chain acyl-CoA dehydrogenase (MCAD) genes. METHODS: Single exon and multiplex PCR protocols were applied to generate PCR templates for subsequent DNA sequencing of all exons of the OTC and the MCAD genes. For each PCR protocol and using the same DNA samples, 66 OTC and 98 MCAD sequence reads were generated. The sequences derived from the two different PCR methods were compared at the level of individual signal-to-noise ratios of the four bases and the proportion of high-quality base-signals. RESULTS: The single exon and the multiplex PCR protocol gave qualitatively comparable results for the two genes. CONCLUSIONS: Many existing sequencing based mutation analysis protocols may be easily optimized with the proposed method, since the multiplex PCR protocol was successfully applied without any re-design of the PCR primers and other optimization steps for generating sequencing templates for the OTC and MCAD genes, respectively.
Resumo:
Echinococcus granulosus is characterized by high intra-specific variability (genotypes G1-G10) and according to the new molecular phylogeny of the genus Echinococcus, the E. granulosus complex has been divided into E. granulosus sensu stricto (G1-G3), E. equinus (G4), E. ortleppi (G5), and E. canadensis (G6-G10). The molecular characterization of E. granulosus isolates is fundamental to understand the spatio-temporal epidemiology of this complex in many endemic areas with the simultaneous occurrence of different Echinococcus species and genotypes. To simplify the genotyping of the E. granulosus complex we developed a single-tube multiplex PCR (mPCR) allowing three levels of discrimination: (i) Echinococcus genus, (ii) E. granulosus complex in common, and (iii) the specific genotype within the E. granulosus complex. The methodology was established with known DNA samples of the different strains/genotypes, confirmed on 42 already genotyped samples (Spain: 22 and Bulgaria: 20) and then successfully applied on 153 unknown samples (Tunisia: 114, Algeria: 26 and Argentina: 13). The sensitivity threshold of the mPCR was found to be 5 ng Echinoccoccus DNA in a mixture of up to 1 µg of foreign DNA and the specificity was 100% when template DNA from closely related members of the genus Taenia was used. Additionally to DNA samples, the mPCR can be carried out directly on boiled hydatid fluid or on alkaline-lysed frozen or fixed protoscoleces, thus avoiding classical DNA extractions. However, when using Echinococcus eggs obtained from fecal samples of infected dogs, the sensitivity of the mPCR was low (<40%). Thus, except for copro analysis, the mPCR described here has a high potential for a worldwide application in large-scale molecular epidemiological studies on the Echinococcus genus.
Resumo:
The association of a particular mitochondrial DNA (mtDNA) mutation with different clinical phenotypes is a well-known feature of mitochondrial diseases. A simple genotype–phenotype correlation has not been found between mutation load and disease expression. Tissue and intercellular mosaicism as well as mtDNA copy number are thought to be responsible for the different clinical phenotypes. As disease expression of mitochondrial tRNA mutations is mostly in postmitotic tissues, studies to elucidate disease mechanisms need to be performed on patient material. Heteroplasmy quantitation and copy number estimation using small patient biopsy samples has not been reported before, mainly due to technical restrictions. In order to resolve this problem, we have developed a robust assay that utilizes Molecular Beacons to accurately quantify heteroplasmy levels and determine mtDNA copy number in small samples carrying the A8344G tRNALys mutation. It provides the methodological basis to investigate the role of heteroplasmy and mtDNA copy number in determining the clinical phenotypes.
Resumo:
Resistance to antibiotics used against Neisseria gonorrhoeae infections is a major public health concern. Antimicrobial resistance (AMR) testing relies on time-consuming culture-based methods. Development of rapid molecular tests for detecting AMR determinants could provide valuable tools for surveillance, epidemiological studies and to inform individual case management. We developed a fast (<1.5 hrs) SYBR-green based real-time PCR method with high resolution melting (HRM) analysis. One triplex and three duplex reactions included two sequences for N. gonorrhoeae identification and seven determinants of resistance to extended-spectrum cephalosporins (ESCs), azithromycin, ciprofloxacin, and spectinomycin. The method was validated by testing 39 previously fully-characterized N. gonorrhoeae strains, 19 commensal Neisseria spp., and an additional panel of 193 gonococcal isolates. Results were compared with culture-based AMR determination. The assay correctly identified N. gonorrhoeae and the presence or absence of the seven AMR determinants. There was some cross-reactivity with non-gonococcal Neisseria species and the detection limit was 10(3)-10(4) gDNA copies/reaction. Overall, the platform accurately detected resistance to ciprofloxacin (sensitivity and specificity, 100%), ceftriaxone (sensitivity 100%, specificity 90%), cefixime (sensitivity 92%, specificity 94%), azithromycin and spectinomycin (both sensitivity and specificity, 100%). In conclusion, our methodology accurately detects mutations generating resistance to antibiotics used to treat gonorrhea. Low assay sensitivity prevents direct diagnostic testing of clinical specimens but this method can be used to screen collections of gonococcal isolates for AMR more quickly than with current culture-based AMR testing.
Resumo:
We report genetic characterization of isochromosome 18p using a combination of cytogenetic and molecular genetic methods, including multiplex fluorescent PCR. The patient was referred for chorionic villus sampling (CVS) due to advanced maternal age and maternal anxiety. The placental karyotype was 47,XX,+mar, with the marker having the appearance of a small supernumerary isochromosome. Because differentiating between isochromosomes and other structural rearrangements is normally very difficult, a variety of genetic tests including fluorescence in situ hybridization (FISH), PCR, and multiplex fluorescent PCR were undertaken to determine chromosomal origin and copy number and, thus, allow accurate diagnosis of the corresponding syndrome. FISH determined that the marker chromosome contained chromosome 18 material. PCR of a variety of short tandem repeats (STRs) confirmed that there was at least one extra copy of the maternal 18p material. However, neither FISH nor PCR could accurately determine copy number. Multiplex fluorescent PCR (MF-PCR) of STRs simultaneously determined that: (1) the marker included 18p material; (2) the marker was maternal in origin; (3) allele copy number indicated tetrasomy; and (4) contamination of the sample could be ruled out. Results were also rapid with accurate diagnosis of the syndrome tetrasomy 18p possible within 5 hours.
Resumo:
Cell culture and direct fluorescent antibody (DFA) assays have been traditionally used for the laboratory diagnosis of respiratory viral infections. Multiplex reverse transcriptase polymerase chain reaction (m-RT-PCR) is a sensitive, specific, and rapid method for detecting several DNIA and RNA viruses in a single specimen. We developed a m-RT-PCR assay that utilizes multiple virus-specific primer pairs in a single reaction mix combined with an enzyme-linked amplicon hybridization assay (ELAHA) using virus-specific probes targeting unique gene sequences for each virus. Using this m-RT-PCR-ELAHA, we examined the presence of seven respiratory viruses in 598 nasopharyngeal aspirate (NPA) samples from patients with suspected respiratory infection. The specificity of each assay was 100%. The sensitivity of the DFA was 79.7% and the combined DFA/culture amplified-DFA (CA-DFA) was 88.6% when compared to the m-RT-PCR-ELAHA. Of the 598 NPA specimens screened by m-RT-PCR-ELAHA, 3% were positive for adenovirus (ADM), 2% for influenza A (Flu A) virus, 0.3% for influenza B (Flu B) virus, 1% for parainfluenza type I virus (PIV1), 1% for parainfluenza type 2 virus (PIV2), 5.5% for parainfluenza type 3 virus (PIV3), and 21% for respiratory syncytial virus (RSV). The enhanced sensitivity, specificity, rapid result turnaround time and reduced expense of the m-RT-PCR-ELAHA compared to DFA and CA-DFA, suggests that this assay would be a significant improvement over traditional assays for the detection of respiratory viruses in a clinical laboratory.
Resumo:
Antibiotics are becoming increasingly prevalent in bacterial communities due to clinical and agricultural misuse and overuse in their environment. As exposure increases, so does the incidence of microbial resistance. Such is the case with bacterial resistance to tetracyclines, a phenotype often acquired through the horizontal gene transfer of tet genes between bacteria. The objective of this project was to analyze the bacterial diversity of tet resistance genes in soil from Miami-Dade County. Bacterial isolates were Gram-stained and the Kirby-Bauer antibiotic disk diffusion test was performed to determine each bacterium’s degree of resistance. The 16S rRNA gene from antibiotic-resistant isolates was amplified by PCR and sequenced to identify the isolates. All isolates’ tet genes were amplified by multiplex PCR, sequenced, and compared. Among eight isolates, three distinct species were positively identified based on their 16S rRNA sequences and four distinct tet genes were identified, though all tested susceptible to tetracycline via the Kirby-Bauer test. This project clarifies some aspects of the ecology of antibiotic resistance genes, their natural ecological function and the potential for the expansion of intrinsic multi-antibiotic resistance into new ecosystems and/or hosts.
Resumo:
The global socioeconomic importance of helminth parasitic disease is underpinned by the considerable clinical impact on millions of people. While helminth polyparasitism is considered common in the Philippines, little has been done to survey its extent in endemic communities. High morphological similarity of eggs between related species complicates conventional microscopic diagnostic methods which are known to lack sensitivity, particularly in low intensity infections. Multiplex quantitative PCR diagnostic methods can provide rapid, simultaneous identification of multiple helminth species from a single stool sample. We describe a multiplex assay for the differentiation of Ascaris lumbricoides, Necator americanus, Ancylostoma, Taenia saginata and Taenia solium, building on our previously published findings for Schistosoma japonicum. Of 545 human faecal samples examined, 46.6% were positive for at least three different parasite species. High prevalences of S. japonicum (90.64%), A. lumbricoides (58.17%), T. saginata (42.57%) and A. duodenale (48.07%) were recorded. Neither T. solium nor N. americanus were found to be present. The utility of molecular diagnostic methods for monitoring helminth parasite prevalence provides new information on the extent of polyparasitism in the Philippines municipality of Palapag. These methods and findings have potential global implications for the monitoring of neglected tropical diseases and control measures.