948 resultados para Oxytocin receptors
Resumo:
Nicotinic receptors are the target of nicotine in the brain. They are pentameric ion channels. The pentamer structure allows many combinations of receptors to be formed. These various subtypes exhibit specific properties determined by their subunit composition. Each brain region contains a fixed complement of nicotinic receptor subunits. The midbrain region is of particular interest because the dopaminergic neurons of the midbrain express several subtypes of nicotinic receptors, and these dopaminergic neurons are important for the rewarding effects of nicotine. The α6 nicotinic receptor subunit has garnered intense interest because it is present in dopaminergic neurons but very few other brain regions. With its specific and limited presence in the brain, targeting this subtype of nicotinic receptor may prove advantageous as a method for smoking cessation. However, we do not fully understand the trafficking and membrane localization of this receptor or its effects on dopamine release in the striatum. We hypothesized that lynx1, a known modulator of other nicotinic receptor subtypes, is important for the proper function of α6 nicotinic receptors. lynx1 has been found to act upon several classes of nicotinic receptors, such as α4β2 and α7, the two most common subtypes in the brain. To determine whether lynx1 affects α6 containing nicotinic receptors we used biochemistry, patch clamp electrophysiology, fast scan cyclic voltammetry, and mouse behavior. We found that lynx1 has effects on α6 containing nicotinic receptors, but the effects were subtle. This thesis will detail the observed effects of lynx1 on α6 nicotinic receptors.
Resumo:
This dissertation primarily describes studies of serotonin type 3 (5-HT3) receptors of the Cys-loop super-family of ligand gated ion channels. The first chapter provides a general introduction to these important proteins and the methods used to interrogate their structure and function. The second chapter details the delineation of a structural unit of the ligand binding site of homomeric 5-HT3A receptors on which the ligands serotonin (5-HT) and m-chlorophenyl biguanide (mCPBG) are reliant for effective receptor activation. Unnatural amino acid mutagenesis results show that the details of each ligand’s interaction with this organizing feature of the binding site differ, providing insights into general principles of receptor activation.
The third chapter describes a study in which florescent protein fusions of the A and B subunits of the heteromeric 5-HT3AB receptor are employed to determine the subunit stoichiometry and order within functional receptors. Strong evidence is found for an A3B2 stoichiometry with A-A-B-A-B order. The fourth chapter investigates the potential for ligand binding across heteromeric binding sites in the 5-HT3AB receptor. Unlike serotonin, mCPBG is found to bind the receptor at heteromeric binding sites. Further mCPBG is capable of allosterically modulating the response of serotonin on the 5-HT3AB receptor from these heteromeric sites.
Finally, the fifth chapter describes progress towards the application of unnatural amino acid mutagenesis to an important new class of proteins, transcription factors. Experiments optimizing novel methods for the detection of function are described, using RARα of the nuclear receptor family of transcription factors.
Resumo:
G-protein coupled receptors (GPCRs) form a large family of proteins and are very important drug targets. They are membrane proteins, which makes computational prediction of their structure challenging. Homology modeling is further complicated by low sequence similarly of the GPCR superfamily.
In this dissertation, we analyze the conserved inter-helical contacts of recently solved crystal structures, and we develop a unified sequence-structural alignment of the GPCR superfamily. We use this method to align 817 human GPCRs, 399 of which are nonolfactory. This alignment can be used to generate high quality homology models for the 817 GPCRs.
To refine the provided GPCR homology models we developed the Trihelix sampling method. We use a multi-scale approach to simplify the problem by treating the transmembrane helices as rigid bodies. In contrast to Monte Carlo structure prediction methods, the Trihelix method does a complete local sampling using discretized coordinates for the transmembrane helices. We validate the method on existing structures and apply it to predict the structure of the lactate receptor, HCAR1. For this receptor, we also build extracellular loops by taking into account constraints from three disulfide bonds. Docking of lactate and 3,5-dihydroxybenzoic acid shows likely involvement of three Arg residues on different transmembrane helices in binding a single ligand molecule.
Protein structure prediction relies on accurate force fields. We next present an effort to improve the quality of charge assignment for large atomic models. In particular, we introduce the formalism of the polarizable charge equilibration scheme (PQEQ) and we describe its implementation in the molecular simulation package Lammps. PQEQ allows fast on the fly charge assignment even for reactive force fields.
Resumo:
Nicotinic acetylcholine receptors (nAChRs) are pentameric, ligand-gated, cation channels found throughout the central and peripheral nervous system, whose endogenous ligand is acetylcholine, but which can also be acted upon by nicotine. The subunit compositions of nAChR determine their physiological and pharmacological properties, with different subunits expressed in different combinations or areas throughout the brain. The behavioral and physiological effects of nicotine are elicited by its agonistic and desensitizing actions selectively on neuronal nAChRs. The midbrain is of particular interest due to its population of nAChRs expressed on dopaminergic neurons, which are important for reward and reinforcement, and possibly contribute to nicotine dependence. The α6-subunit is found on dopaminergic neurons but very few other regions of the brain, making it an interesting drug target. We assayed a novel nicotinic agonist, called TI-299423 or TC299, for its possible selectivity for α6-containing nAChRs. Our goal was to isolate the role of α6-containing nAChRs in nicotine reward and reinforcement, and provide insight into the search for more effective smoking cessation compounds. This was done using a variety of in vitro and behavioral assays, aimed dually at understanding TI-299423’s exact mechanism of action and its downstream effects. Additionally, we looked at the effects of another compound, menthol, on nicotine reward. Understanding how reward is generated in the cholinergic system and how that is modulated by other compounds contributes to a better understand of our complex neural circuitry and provides insight for the future development of therapeutics.
Resumo:
Nicotinic acetylcholine receptors are pentameric ligand-gated ion channels mediating fast synaptic transmission throughout the peripheral and central nervous systems. They have been implicated in various processes related to cognitive functions, learning and memory, arousal, reward, motor control and analgesia. Therefore, these receptors present alluring potential therapeutic targets for the treatment of pain, epilepsy, Alzheimer’s disease, Parkinson’s disease, Tourette’s syndrome, schizophrenia, anxiety, depression and nicotine addiction. The work detailed in this thesis focuses on binding studies of neuronal nicotinic receptors and aims to further our knowledge of subtype specific functional and structural information.
Chapter 1 is an introductory chapter describing the structure and function of nicotinic acetylcholine receptors as well as the methodologies used for the dissertation work described herein. There are several different subtypes of nicotinic acetylcholine receptors known to date and the subtle variations in their structure and function present a challenging area of study. The work presented in this thesis deals specifically with the α4β2 subtype of nicotinic acetylcholine receptor. This subtype assembles into 2 closely related stoichiometries, termed throughout this thesis as A3B2 and A2B3 after their respective subunit composition. Chapter 2 describes binding studies of select nicotinic agonists on A3B2 and A2B3 receptors determined by whole-cell recording. Three key binding interactions, a cation-π and two hydrogen bonds, were probed for four nicotinic agonists, acetylcholine, nicotine, smoking cessation drug varenicline (Chantix®) and the related natural product cytisine.
Results from the binding studies presented in Chapter 2 show that the major difference in binding of these four agonists to A3B2 and A2B3 receptors lies in one of the two hydrogen bond interactions where the agonist acts as the hydrogen bond acceptor and the backbone NH of a conserved leucine residue in the receptor acts as the hydrogen bond donor. Chapter 3 focuses on studying the effect of modulating the hydrogen bond acceptor ability of nicotine and epibatidine on A3B2 receptor function determined by whole-cell recording. Finally, Chapter 4 describes single-channel recording studies of varenicline binding to A2B3 and A3B2 receptors.
Resumo:
This dissertation primarily describes chemical-scale studies of nicotinic acetylcholine receptors (nAChRs) in order to better understand ligand-receptor selectivity and allosteric modulation influences during receptor activation. Electrophysiology coupled with canonical and non-canonical amino acids mutagenesis is used to probe subtle changes in receptor function.
The first half of this dissertation focuses on differential agonist selectivity of α4β2-containing nAChRs. The α4β2 nAChR can assemble in alternative stoichiometries as well as assemble with other accessory subunits. Chapter 2 identifies key structural residues that dictate binding and activation of three stoichiometry-dependent α4β2 receptor ligands: sazetidine-A, cytisine, and NS9283. These do not follow previously suggested hydrogen-bonding patterns of selectivity. Instead, three residues on the complementary subunit strongly influence binding ability of a ligand and receptor activation. Chapter 3 involves isolation of a α5α4β2 receptor-enriched population to test for a potential alternative agonist binding location at the α5 α4 interface. Results strongly suggest that agonist occupation of this site is not necessary for receptor activation and that the α5 subunit only incorporates at the accessory subunit location.
The second half of this dissertation seeks to identify residue interactions with positive allosteric modulators (PAMs) of the α7 nAChR. Chapter 4 focuses on methods development to study loss of potentiation of Type I PAMs, which indicate residues vital to propagation of PAM effects and/or binding. Chapter 5 investigates α7 receptor modulation by a Type II PAM (PNU 120596). These results show that PNU 120596 does not alter the agonist binding site, thus is relegated to influencing only the gating component of activation. From this, we were able to map a potential network of residues from the agonist binding site to the proposed PNU 120596 binding site that are essential for receptor potentiation.
Resumo:
Cannabinoid CB1 receptors peripherally modulate energy metabolism. Here, we investigated the role of CB1 receptors in the expression of glucose/pyruvate/tricarboxylic acid (TCA) metabolism in rat abdominal muscle. Dihydrolipoamide dehydrogenase (DLD), a flavoprotein component (E3) of alpha-ketoacid dehydrogenase complexes with diaphorase activity in mitochondria, was specifically analyzed. After assessing the effectiveness of the CB1 receptor antagonist AM251 (3 mg kg(-1), 14 days) on food intake and body weight, we could identified seven key enzymes from either glycolytic pathway or TCA cycle-regulated by both diet and CB1 receptor activity-through comprehensive proteomic approaches involving two-dimensional electrophoresis and MALDI-TOF/LC-ESI trap mass spectrometry. These enzymes were glucose 6-phosphate isomerase (GPI), triosephosphate isomerase (TPI), enolase (Eno3), lactate dehydrogenase (LDHa), glyoxalase-1 (Glo1) and the mitochondrial DLD, whose expressions were modified by AM251 in hypercaloric diet-induced obesity. Specifically, AM251 blocked high-carbohydrate diet (HCD)-induced expression of GPI, TPI, Eno3 and LDHa, suggesting a down-regulation of glucose/pyruvate/lactate pathways under glucose availability. AM251 reversed the HCD-inhibited expression of Glo1 and DLD in the muscle, and the DLD and CB1 receptor expression in the mitochondrial fraction. Interestingly, we identified the presence of CB1 receptors at the membrane of striate muscle mitochondria. DLD over-expression was confirmed in muscle of CB1-/- mice. AM251 increased the pyruvate dehydrogenase and glutathione reductase activity in C2C12 myotubes, and the diaphorase/oxidative activity in the mitochondria fraction. These results indicated an up-regulation of methylglyoxal and TCA cycle activity. Findings suggest that CB1 receptors in muscle modulate glucose/pyruvate/lactate pathways and mitochondrial oxidative activity by targeting DLD.
Resumo:
The presence of endogenous opioid peptides in different testicular cell types has been extensively characterized and provides evidence for the participation of the opioid system in the regulation of testicular function. However, the exact role of the opioid system during the spermatogenesis has remained controversial since the presence of the mu-, delta-and kappa-opioid receptors in spermatogenic cells was yet to be demonstrated. Through a combination of quantitative real-time PCR, immunofluorescence, immunohistochemistry and flow cytometry approaches, we report for the first time the presence of active mu-, deltaand kappa-opioid receptors in mouse male germ cells. They show an exposition time-dependent response to opioid agonist, hence suggesting their active involvement in spermatogenesis. Our results contribute to understanding the role of the opioid receptors in the spermatogenesis and could help to develop new strategies to employ the opioid system as a biochemical tool for the diagnosis and treatment of male infertility.
Resumo:
Gaining insight into the mechanisms of chemoreception in aphids is of primary importance for both integrative studies on the evolution of host plant specialization and applied research in pest control management because aphids rely on their sense of smell
Resumo:
Adenosine receptors play an important role in learning and memory as their antagonists have been found to facilitate learning and memory in various tasks in rodents. However, few studies have examined the effect of adenosine A(2A) receptor deficiency on c
Resumo:
The aim of this study was to investigate the effect of extremely low-frequency electromagnetic field (ELF-EMF) exposure during morphine treatment on dopamine D2 receptor (D2R) density in the rat dorsal hippocampus following withdrawal. Rats were exposed t
Resumo:
The subiculum, which is the primary target of CA1 pyramidal neurons and sending efferent fibres to many brain regions, serves as a hippocampal interface in the neural information processes between hippocampal formation and neocortex. Long-term depression (LTD) is extensively studied in the hippocampus, but not at the CA1-subicular synaptic transmission. Using whole-cell EPSC recordings in the brain slices of young rats, we demonstrated that the pairing protocols of low frequency stimulation (LFS) at 3 Hz and postsynaptic depolarization of -50 mVelicited a reliable LTD in the subiculum. The LTD did not cause the changes of the paired-pulse ratio of EPSC. Furthermore, it did not depend on either NMDA receptors or voltage-gated calcium channels (VGCCs). Bath application of the G-protein coupled muscarinic acetylcholine receptors (mAChRs) antagonists, atropine or scopolamine, blocked the LTD, suggesting that mAChRs are involved in the LTD. It was also completely blocked by either the Ca2+ chelator BAPTA or the G-protein inhibitor GDP-beta-S in the intracellular solution. This type of LTD in the subiculum may play a particular role in the neural information processing between the hippocampus and neocortex. (c) 2005 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Resumo:
Learned association between drugs of abuse and context is essential for the formation of drug conditioned place preference (CPP), which is believed to engage many brain regions including hippocampus, and nucleus accumbens (NAc). The underlying mechanisms
Resumo:
Behavioral stress facilitates long-term depression but impairs long-term potentiation in the hippocampus. Recent evidence in vitro demonstrates that the NIR2B-containing N-methyl-D-aspartate subtype glutamate receptor antagonist Ro25-6981 prevents the beh