964 resultados para Oxidative DNA-Schäden, Krebsentstehung, OGG1, CSB, Peroxisomenproliferator WY-14,643


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arsenic (As) induces DNA-damaging reactive oxygen species. Most oxidative DNA damage is countered by base excision repair (BER), the capacity for which may be reduced in older animals. We examined whether age and consumption of As in lactational milk or drinking water influences BER gene transcript levels in mice. Lactating mothers and 24-week-old mice were exposed (24 h or 2 weeks) to As (2 or 50 p.p.m.) in drinking water. Lung tissue was harvested from adults, neonates (initially 1 week old) feeding from lactating mothers and untreated animals 1– 26 weeks old. Transcripts encoding BER proteins were quantified. BER transcript levels decreased precipitously with age in untreated mice but increased in neonates whose mothers were exposed to 50 p.p.m. As for 24 h or 2 weeks. Treatment of 24-week-old mice with 2 or 50 p.p.m. As for 2 weeks decreased all transcript levels measured. Exposure to As attenuated the age-related transcript level decline for only one BER gene. We conclude that aging is associated with a rapid reduction of BER transcript levels in mice, which may contribute to decreased BER activity in older animals. Levels of As that can alter gene expression are transmitted to neonatal mice in lactational milk produced by mothers drinking water containing As, raising concerns about breastfeeding in countries having As-contaminated groundwater. Reduction of BER transcript levels in 24- week-old mice exposed to As for 2 weeks suggests As may potentiate sensitivity to itself in older animals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reactive oxygen species (ROS) are produced by aerobic metabolism and react with biomolecules, such as lipids, proteins and DNA. In high concentration, they lead to oxidative stress. Among ROS, singlet oxygen (1O2) is one of the main ROS involved in oxidative stress and is one of the most reactive forms of molecular oxygen. The exposure of some dyes, such as methylene blue (MB) to light (MB+VL), is able to generate 1O2 and it is the principle involved in photodynamic therapy (PDT). 1O2 e other ROS have caused toxic and carcinogenic effects and have been associated with ageing, neurodegenerative diseases and cancer. Oxidative DNA damage is mainly repaired by base excision repair (BER) pathway. However, recent studies have observed the involvement of nucleotide excision repair (NER) factors in the repair of this type of injury. One of these factors is the Xeroderma Pigmentosum Complementation Group A (XPA) protein, which acts with other proteins in DNA damage recognition and in the recruitment of other repair factors. Moreover, oxidative agents such as 1O2 can induce gene expression. In this context, this study aimed at evaluating the response of XPA-deficient cells after treatment with photosensitized MB. For this purpose, we analyzed the cell viability and occurrence of oxidative DNA damage in cells lines proficient and deficient in XPA after treatment with MB+VL, and evaluated the expression of this enzyme in proficient and complemented cells. Our results indicate an increased resistance to treatment of complemented cells and a higher level of oxidative damage in the deficient cell lines. Furthermore, the treatment was able to modulate the XPA expression up to 24 hours later. These results indicate a direct evidence for the involvement of NER enzymes in the repair of oxidative damage. Besides, a better understanding of the effects of PDT on the induction of gene expression could be provided

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lycopene is a natural carotenoid, free radical scavenger, and presents protective effects by inhibiting oxidative DNA damage. The objective of the current study was to investigate the cytogenetic effects of a single acute and four daily gavage administrations of lycopene, and to examine possible protective effects on chromosomal damage induced by the antitumor drug cisplatin (cDDP) in rat bone marrow cells. The animals were divided into treatment groups, with three lycopene doses in the acute treatment (2, 4, and 6 mg/kg b.w.), three lycopene doses in the subacute treatment (0.5, 1.0, and 1.5 mg/kg b.w.) with and without cDDP (5 mg/kg b.w. i.p.), and respective controls. The results indicated that lycopene is neither cytotoxic nor clastogenic when compared with the negative controls (P > 0.01). cDDP-treated animals submitted to acute and subacute treatments with different lycopene doses showed a significant reduction (p < 0.01) in the number of abnormal metaphases when compared with the animals treated only with cDDP. The protective effects of lycopene on cDDP-induced chromosomal damage may be attributed to its antioxidant activity. These results suggest that this carotenoid may prove useful in reducing some of the toxic effects associated with certain classes of chemotherapeutic agents. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this study was to investigate the ability of fluoride to modulate the genotoxic effects induced by the oxidative agent hydrogen peroxide (H2O2) and the alkylating agent methyl methanesulfonate (MMS) in vitro by the single-cell gel ( comet) assay. Chinese hamster ovary cells were exposed in culture for 1 h at 37 degrees C to sodium fluoride at 7-100 mu g/ml. NaF-treated and control cells were then incubated with 0-10 mu M MMS in phosphate-buffered saline (PBS) for 15 min at 37 degrees C, or 7-100 mu M H2O2 in distilled water for 5 min on ice. Negative control cells were treated with PBS for 1 h at 37 degrees C. Clear concentration-related effects were observed for the two genotoxins. Increase of DNA damage induced by either MMS or H2O2 was not significantly altered by pretreatment with NaF. The data indicate that NaF does not modulate alkylation-induced genotoxicity or oxidative DNA damage as measured by the single-cell gel ( comet) assay. Copyright (c) 2007 S. Karger AG, Basel

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Medicina Veterinária - FCAV

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Fisiopatologia em Clínica Médica - FMB

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isoflurane is a volatile halogenated anesthetic used especially for anesthesia maintenance whereas propofol is a venous anesthetic utilized for anesthesia induction and maintenance, and reportedly an antioxidant. However, there are still controversies related to isoflurane-induced oxidative stress and it remains unanswered whether the antioxidant effects occur in patients under propofol anesthesia.Taking into account the importance of better understanding the role of anesthetics on oxidative stress in anesthetized patients, the present study was designed to evaluate general anesthesia maintained with isoflurane or propofol on antioxidant status in patients who underwent minimally invasive surgeries.We conducted a prospective randomized trial in 30 adult patients without comorbidities who underwent elective minor surgery (septoplasty) lasting at least 2 h admitted to a Brazilian tertiary hospital.The patients were randomly allocated into 2 groups, according to anesthesia maintenance (isoflurane, n = 15 or propofol, n = 15). Peripheral blood samples were drawn before anesthesia (baseline) and 2-h after anesthesia induction.The primary outcomes were to investigate the effect of either isoflurane or propofol anesthesia on aqueous plasma oxidizability and total antioxidant performance (TAP) by fluorometry as well as several individual antioxidants by high-performance liquid chromatography. As secondary outcome, oxidized genetic damage (7,8-dihydro-8-oxoguanine, known as 8-oxo-Gua) was investigated by the comet assay.Both anesthesia techniques (isoflurane or propofol) for a 2-h period resulted in a significant decrease of plasma α-tocopherol, but not other antioxidants including uric acid, carotenoids, and retinol (P > 0.05). Propofol, in contrast to isoflurane anesthesia, significantly increased (P < 0.001) anti-inflammatory/antioxidant plasma γ-tocopherol concentration in patients. Both anesthesia types significantly enhanced hydrophilic antioxidant capacity and TAP, with no significant difference between them, and 8-oxo-Gua remained unchanged during anesthesia in both groups. In addition, both anesthetics showed antioxidant capacity in vitro.This study shows that anesthesia maintained with either propofol or isoflurane increase both hydrophilic and total antioxidant capacity in plasma, but only propofol anesthesia increases plasma γ-tocopherol concentration. Additionally, both types of anesthetics do not lead to oxidative DNA damage in patients without comorbidities undergoing minimally invasive surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)