984 resultados para Oxidation capacity
Resumo:
Purpose - The cumulative impacts of the knowledge economy together with the emerging dominance of knowledge-intensive sectors, have led to an unprecedented period of socio-economic and spatial restructuring. As a result, the paradigm of knowledge-based urban development (KBUD) has emerged as a development strategy to guide knowledge-based economic transformation (Knight, 1995; Yigitcanlar, 2007). Notwithstanding widespread government commitment and financial investment, in many cases providing the enabling circumstances for KUBUD has proven a complicated task as institutional barriers remain. Researchers and practitioners advocate that the way organisations work and their institutional relationships, policies and programs, will have a significant impact on a regions capacity to achieve KBUD (Savitch, 1998; Savitch and Kantor, 2002; Keast and Mandell, 2009). In this context, building organisational capacity is critical to achieving institutional change and bring together all of the key actors and sources, for the successful development, adoption, and implementation of knowledge-based development of a city (Yigitcanlar, 2009). Design/methodology/approach - There is a growing need to determine the complex inter-institutional arrangements and intra-organisational interactions required to advance urban development within the knowledge economy. In order to design organisational capacity-building strategies, the associated attributes of good capacity must first be identified. The paper, with its appraisal of knowledge-based urban development, scrutinises organisational capacity and institutional change in Brisbane. As part of the discussion of the case study findings, the paper describes the institutional relationships, policies, programs and funding streams, which are supporting KBUD in the region. Originality/value - In consideration that there has been limited investigation into the institutional lineaments required to provide the enabling circumstances for KBUD, the broad aim of this paper is to discover some good organisational capacity attributes, achieved through a case study of Brisbane. Practical implications - It is anticipated that the findings of the case study will contribute to moving the discussion on the complex inter-institutional arrangements and intra-organisaational interactions required for KBUD, beyond a position of rhetoric.
Resumo:
This report presents findings from a project that considered a) the current capacity of Adult and Community Education (ACE) providers to offer non-accredited courses and single modules of accredited learning that provide pathways into full scale accredited VET programs, and b) the factors that aid and inhibit this from occurring. Based on the findings, suggestions are made as to what needs to be done to extend this capacity and thereby to achieve the goals outlined in the 2008 Ministerial Declaration on Adult Community Education.
Resumo:
The common approach to estimate bus dwell time at a BRT station is to apply the traditional dwell time methodology derived for suburban bus stops. In spite of being sensitive to boarding and alighting passenger numbers and to some extent towards fare collection media, these traditional dwell time models do not account for the platform crowding. Moreover, they fall short in accounting for the effects of passenger/s walking along a relatively longer BRT platform. Using the experience from Brisbane busway (BRT) stations, a new variable, Bus Lost Time (LT), is introduced in traditional dwell time model. The bus lost time variable captures the impact of passenger walking and platform crowding on bus dwell time. These are two characteristics which differentiate a BRT station from a bus stop. This paper reports the development of a methodology to estimate bus lost time experienced by buses at a BRT platform. Results were compared with the Transit Capacity and Quality of Servce Manual (TCQSM) approach of dwell time and station capacity estimation. When the bus lost time was used in dwell time calculations it was found that the BRT station platform capacity reduced by 10.1%.
Resumo:
Infrastructure capacity management is the process of ensuring optimal provision of infrastructure assets to support business operations. Effectiveness in this process will enable infrastructure asset owners and its stakeholders to receive full value on their investment. Management research has shown that an organisation can only achieve business value when it has the right capabilities. This paradigm can also be applied to infrastructure capacity management. With competing needs for limited organisation resources, the challenge for infrastructure organisations is to identify and invest their limited resources to develop the right capabilities in the management of their infrastructure capacity. Using a multiple case study approach, the challenges faced in the management of infrastructure asset capacity and the approaches that can be adopted to overcome these challenges were explored. Conceptualising the approaches adopted by the case participants, the findings suggest that infrastructure organisations must strengthen their stakeholder connectivity capability in order to effectively manage the capacity of their infrastructure assets.
Resumo:
In addition to the established problem of road safety in developing countries such as Indonesia, the agencies responsible for road safety often lack personnel with professional training in road safety. In Indonesia this is compounded by a need for more effective collaboration between agencies. In 2009, CARRS-Q was commissioned under the Indonesia Transport Safety Assistance Package to provide professional training in road safety for middle level officers in Jakarta, the province of Jawa Barat, and the cities of Bandung, Bogor and Sukabumi, aimed at developing action plans and fostering collaboration between agencies. This was achieved through a workshop, which followed up by a second workshop with the same participants. The course was very well received, action plans were successfully prepared during the first workshop, and most had progressed well by the time of the second workshop. Good cooperation between agencies was also evident. There would be considerable benefits in extending modified workshops more widely in Indonesia.
Resumo:
The assumption that mesenchymal stromal cell (MSC)-based therapies are capable of augmenting physiological regeneration processes has fostered intensive basic and clinical research activities. However, to achieve sustained therapeutic success in vivo, not only the biological, but also the mechanical microenvironment of MSCs during these regeneration processes needs to be taken into account. This is especially important for e.g., bone fracture repair, since MSCs present at the fracture site undergo significant biomechanical stimulation. This study has therefore investigated cellular characteristics and the functional behaviour of MSCs in response to mechanical loading. Our results demonstrated a reduced expression of MSC surface markers CD73 (ecto-5’-nucleotidase) and CD29 (integrin β1) after loading. On the functional level, loading led to a reduced migration of MSCs. Both effects persisted for a week after the removal of the loading stimulus. Specifi c inhibition of CD73/CD29 demonstrated their substrate dependent involvement in MSC migration after loading. These results were supported by scanning electron microscopy images and phalloidin staining of actin fi laments displaying less cell spreading, lamellipodia formation and actin accumulations. Moreover, focal adhesion kinase and Src-family kinases were identified as candidate downstream targets of CD73/CD29 that might contribute to the mechanically induced decrease in MSC migration. These results suggest that MSC migration is controlled by CD73 CD29, which in turn are regulated by mechanical stimulation of cells. We therefore speculate that MSCs migrate into the fracture site, become mechanically entrapped, and thereby accumulate to fulfil their regenerative functions.
Resumo:
Constructing buildings using slip formed load bearing wall panels is becoming increasingly popular in Sri Lanka due to several advantages; low cost, environmental friendliness and rapid construction technique. These wall panels are already successfully implemented in many low rise buildings. However, the seismic capacities of these buildings have not been properly studied. Few seismic activities reported in Sri Lanka have not caused severe structural damage, but predictions can not be made as to whether this will continue to be the case in the future. This highlights the need to study the seismic capacity of buildings constructed in slip formed load bearing wall panels. This paper presents a study of the seismic capacity of the existing medium rise building.
Resumo:
Bus Rapid Transit (BRT), because of its operational flexibility and simplicity, is rapidly gaining popularity with urban designers and transit planners. Earlier BRTs were bus shared lane or bus only lane, which share the roadway with general and other forms of traffic. In recent time, more sophisticated designs of BRT have emerged, such as busway, which has separate carriageway for buses and provides very high physical separation of buses from general traffic. Line capacities of a busway are predominately dependent on bus capacity of its stations. Despite new developments in BRT designs, the methodology of capacity analysis is still based on traditional principles of kerbside bus stop on bus only lane operations. Consequently, the tradition methodology lacks accounting for various dimensions of busway station operation, such as passenger crowd, passenger walking and bus lost time along the long busway station platform. This research has developed a purpose made bus capacity analysis methodology for busway station analysis. Extensive observations of kerbside bus stops and busway stations in Brisbane, Australia were made and differences in their operation were studied. A large scale data collection was conducted using the video recording technique at the Mater Hill Busway Station on the South East Busway in Brisbane. This research identified new parameters concerning busway station operation, and through intricate analysis identified the elements and processes which influence the bus dwell time at a busway station platform. A new variable, Bus lost time, was defined and its quantitative descriptions were established. Based on these finding and analysis, a busway station platform bus capacity methodology was developed, comprising of new models for busway station lost time, busway station dwell time, busway station loading area bus capacity, and busway station platform bus capacity. The new methodology not only accounts for passenger boarding and alighting, but also covers platform crowd and bus lost time in station platform bus capacity estimation. The applicability of this methodology was shown through demonstrative examples. Additionally, these examples illustrated the significance of the bus lost time variable in determining station capacities.