972 resultados para Overflow probability
Resumo:
The application of automatic segmentation methods in lesion detection is desirable. However, such methods are restricted by intensity similarities between lesioned and healthy brain tissue. Using multi-spectral magnetic resonance imaging (MRI) modalities may overcome this problem but it is not always practicable. In this article, a lesion detection approach requiring a single MRI modality is presented, which is an improved method based on a recent publication. This new method assumes that a low similarity should be found in the regions of lesions when the likeness between an intensity based fuzzy segmentation and a location based tissue probabilities is measured. The usage of a normalized similarity measurement enables the current method to fine-tune the threshold for lesion detection, thus maximizing the possibility of reaching high detection accuracy. Importantly, an extra cleaning step is included in the current approach which removes enlarged ventricles from detected lesions. The performance investigation using simulated lesions demonstrated that not only the majority of lesions were well detected but also normal tissues were identified effectively. Tests on images acquired in stroke patients further confirmed the strength of the method in lesion detection. When compared with the previous version, the current approach showed a higher sensitivity in detecting small lesions and had less false positives around the ventricle and the edge of the brain
Resumo:
Consideration is given to a standard CDMA system and determination of the density function of the interference with and without Gaussian noise using sampling theory concepts. The formula derived provides fast and accurate results and is a simple, useful alternative to other methods
Resumo:
References (20)Cited By (1)Export CitationAboutAbstract Proper scoring rules provide a useful means to evaluate probabilistic forecasts. Independent from scoring rules, it has been argued that reliability and resolution are desirable forecast attributes. The mathematical expectation value of the score allows for a decomposition into reliability and resolution related terms, demonstrating a relationship between scoring rules and reliability/resolution. A similar decomposition holds for the empirical (i.e. sample average) score over an archive of forecast–observation pairs. This empirical decomposition though provides a too optimistic estimate of the potential score (i.e. the optimum score which could be obtained through recalibration), showing that a forecast assessment based solely on the empirical resolution and reliability terms will be misleading. The differences between the theoretical and empirical decomposition are investigated, and specific recommendations are given how to obtain better estimators of reliability and resolution in the case of the Brier and Ignorance scoring rule.
Resumo:
The continuous ranked probability score (CRPS) is a frequently used scoring rule. In contrast with many other scoring rules, the CRPS evaluates cumulative distribution functions. An ensemble of forecasts can easily be converted into a piecewise constant cumulative distribution function with steps at the ensemble members. This renders the CRPS a convenient scoring rule for the evaluation of ‘raw’ ensembles, obviating the need for sophisticated ensemble model output statistics or dressing methods prior to evaluation. In this article, a relation between the CRPS score and the quantile score is established. The evaluation of ‘raw’ ensembles using the CRPS is discussed in this light. It is shown that latent in this evaluation is an interpretation of the ensemble as quantiles but with non-uniform levels. This needs to be taken into account if the ensemble is evaluated further, for example with rank histograms.
Resumo:
In this paper I analyze the general equilibrium in a random Walrasian economy. Dependence among agents is introduced in the form of dependency neighborhoods. Under the uncertainty, an agent may fail to survive due to a meager endowment in a particular state (direct effect), as well as due to unfavorable equilibrium price system at which the value of the endowment falls short of the minimum needed for survival (indirect terms-of-trade effect). To illustrate the main result I compute the stochastic limit of equilibrium price and probability of survival of an agent in a large Cobb-Douglas economy.
Resumo:
The plume of Ice Shelf Water (ISW) flowing into the Weddell Sea over the Filchner sill contributes to the formation of Antarctic Bottom Water. The Filchner overflow is simulated using a hydrostatic, primitive equation three-dimensional ocean model with a 0.5–2 Sv ISW influx above the Filchner sill. The best fit to mooring temperature observations is found with influxes of 0.5 and 1 Sv, below a previous estimate of 1.6 ± 0.5 Sv based on sparse mooring velocities. The plume first moves north over the continental shelf, and then turns west, along slope of the continental shelf break where it breaks up into subplumes and domes, some of which then move downslope. Other subplumes run into the eastern submarine ridge and propagate along the ridge downslope in a chaotic manner. The next, western ridge is crossed by the plume through several paths. Despite a number of discrepancies with observational data, the model reproduces many attributes of the flow. In particular, we argue that the temporal variability shown by the observations can largely be attributed to the unstable structure of the flow, where the temperature fluctuations are determined by the motion of the domes past the moorings. Our sensitivity studies show that while thermobaricity plays a role, its effect is small for the flows considered. Smoothing the ridges out demonstrate that their presence strongly affects the plume shape around the ridges. An increase in the bottom drag or viscosity leads to slowing down, and hence thickening and widening of the plume
Resumo:
We develop a new sparse kernel density estimator using a forward constrained regression framework, within which the nonnegative and summing-to-unity constraints of the mixing weights can easily be satisfied. Our main contribution is to derive a recursive algorithm to select significant kernels one at time based on the minimum integrated square error (MISE) criterion for both the selection of kernels and the estimation of mixing weights. The proposed approach is simple to implement and the associated computational cost is very low. Specifically, the complexity of our algorithm is in the order of the number of training data N, which is much lower than the order of N2 offered by the best existing sparse kernel density estimators. Numerical examples are employed to demonstrate that the proposed approach is effective in constructing sparse kernel density estimators with comparable accuracy to those of the classical Parzen window estimate and other existing sparse kernel density estimators.
Resumo:
This paper examines the impact of the auction process of residential properties that whilst unsuccessful at auction sold subsequently. The empirical analysis considers both the probability of sale and the premium of the subsequent sale price over the guide price, reserve and opening bid. The findings highlight that the final achieved sale price is influenced by key price variables revealed both prior to and during the auction itself. Factors such as auction participation, the number of individual bidders and the number of bids are significant in a number of the alternative specifications.
Resumo:
We consider tests of forecast encompassing for probability forecasts, for both quadratic and logarithmic scoring rules. We propose test statistics for the null of forecast encompassing, present the limiting distributions of the test statistics, and investigate the impact of estimating the forecasting models' parameters on these distributions. The small-sample performance is investigated, in terms of small numbers of forecasts and model estimation sample sizes. We show the usefulness of the tests for the evaluation of recession probability forecasts from logit models with different leading indicators as explanatory variables, and for evaluating survey-based probability forecasts.
Resumo:
A new sparse kernel density estimator is introduced. Our main contribution is to develop a recursive algorithm for the selection of significant kernels one at time using the minimum integrated square error (MISE) criterion for both kernel selection. The proposed approach is simple to implement and the associated computational cost is very low. Numerical examples are employed to demonstrate that the proposed approach is effective in constructing sparse kernel density estimators with competitive accuracy to existing kernel density estimators.
Resumo:
Techniques are proposed for evaluating forecast probabilities of events. The tools are especially useful when, as in the case of the Survey of Professional Forecasters (SPF) expected probability distributions of inflation, recourse cannot be made to the method of construction in the evaluation of the forecasts. The tests of efficiency and conditional efficiency are applied to the forecast probabilities of events of interest derived from the SPF distributions, and supplement a whole-density evaluation of the SPF distributions based on the probability integral transform approach.