532 resultados para Ostwald ripening


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To identify genes involved in papaya fruit ripening, a total of 1171 expressed sequence tags (ESTs) were generated from randomly selected clones of two independent fruit cDNA libraries derived from yellow and red-fleshed fruit varieties. The most abundant sequences encoded: chitinase, 1-aminocyclopropane- 1-carboxylic acid (ACC) oxidase, catalase and methionine synthase, respectively. DNA sequence comparisons identified ESTs with significant similarity to genes associated with fruit softening, aroma and colour biosynthesis. Putative cell wall hydrolases, cell membrane hydrolases, and ethylene synthesis and regulation sequences were identified with predicted roles in fruit softening. Expressed papaya genes associated with fruit aroma included isoprenoid biosynthesis and shikimic acid pathway genes and proteins associated with acyl lipid catabolism. Putative fruit colour genes were identified due to their similarity with carotenoid and chlorophyll biosynthesis genes from other plant species. © 2005 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The capacity of European pear fruit (Pyrus communis L.) to ripen after harvest develops during the final stages of growth on the tree. The objective of this study was to characterize changes in 'Bartlett' pear fruit physico-chemical properties and transcription profiles during fruit maturation leading to attainment of ripening capacity. Results: The softening response of pear fruit held for 14days at 20°C after harvest depended on their maturity. We identified four maturity stages: S1-failed to soften and S2- displayed partial softening (with or without ET-ethylene treatment); S3 - able to soften following ET; and S4 - able to soften without ET. Illumina sequencing and Trinity assembly generated 68,010 unigenes (mean length of 911bp), of which 32.8% were annotated to the RefSeq plant database. Higher numbers of differentially expressed transcripts were recorded in the S3-S4 and S1-S2 transitions (2805 and 2505 unigenes, respectively) than in the S2-S3 transition (2037 unigenes). High expression of genes putatively encoding pectin degradation enzymes in the S1-S2 transition suggests pectic oligomers may be involved as early signals triggering the transition to responsiveness to ethylene in pear fruit. Moreover, the co-expression of these genes with Exps (Expansins) suggests their collaboration in modifying cell wall polysaccharide networks that are required for fruit growth. K-means cluster analysis revealed that auxin signaling associated transcripts were enriched in cluster K6 that showed the highest gene expression at S3. AP2/EREBP (APETALA 2/ethylene response element binding protein) and bHLH (basic helix-loop-helix) transcripts were enriched in all three transition S1-S2, S2-S3, and S3-S4. Several members of Aux/IAA (Auxin/indole-3-acetic acid), ARF (Auxin response factors), and WRKY appeared to play an important role in orchestrating the S2-S3 transition. Conclusions: We identified maturity stages associated with the development of ripening capacity in 'Bartlett' pear, and described the transcription profile of fruit at these stages. Our findings suggest that auxin is essential in regulating the transition of pear fruit from being ethylene-unresponsive (S2) to ethylene-responsive (S3), resulting in fruit softening. The transcriptome will be helpful for future studies about specific developmental pathways regulating the transition to ripening. © 2015 Nham et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strawberry fruits are highly appreciated worldwide due to their pleasant flavor and aroma and to the health benefits associated to their consumption. An important part of these properties is due to their content in secondary metabolites, especially phenolic compounds, of which flavonoids are the most abundant in the strawberry fruit. Although the flavonoid biosynthesis pathway is uncovered, little is known about its regulation. The strawberry Fra a (Fra) genes constitute a large family of homologs of the major birch pollen allergen Bet v 1 and for which no equivalents exist in Arabidopsis. Our group has shown that Fra proteins are involved in the formation of colored compounds in strawberries (Muñoz et al., 2010), which mainly depends on the production of certain flavonoids; that they are structurally homologs to the PYR/PYL/RCAR Arabidopsis ABA receptor, and that they are able to bind flavonoids (Casañal et al., 2013). With these previous results, our working hypothesis is that the Fra proteins are involved in the regulation of the flavonoids pathway. They would mechanistically act as the ABA receptor, binding a protein interactor and a ligand to regulate a signaling cascade and/or act as molecular carriers. The main objective of this research is to characterize the Fra family in strawberry and gain insight into their role in the flavonoid metabolism. By RNAseq expression analysis in ripening fruits we have identified transcripts for 10 members of the Fra family. Although expressed in all tissues analyzed, each family member presents a unique pattern of expression, which suggests functional specialization for each Fra protein. Then, our next approach was to identify the proteins that interact with Fras and their ligands to gain knowledge on the role that these proteins play in the flavonoids pathway. To identify the interacting partners of Fras we have performed a yeast two hybrid (Y2H) screening against cDNA libraries of strawberry fruits at the green and red stages. A protein that shares a 95% homology to the Heat stress transcription factor A-4-C like of Fragaria vesca (HSA4C) interacts specifically with Fra1 and not with other family members, which suggests functional diversification of Fra proteins in specific signaling pathways. The Y2H screening is not yet saturated, so characterization of other interacting proteins with other members of the Fra family will shed light on the functional diversity within this gene family. This research will contribute to gain knowledge on how the flavonoid pathway, and hence, the fruit ripening, is regulated in strawberry; an economically important crop but for which basic research is still very limited. References: Muñoz, C, et al. (2010). The Strawberry Fruit Fra a Allergen Functions in Flavonoid Biosynthesis. Molecular Plant, 3(1): 113–124. Casañal, A, et al (2013). The Strawberry Pathogenesis-related 10 (PR-10) Fra a Proteins Control Flavonoid Biosynthesis by Binding Metabolic Intermediates. Journal of Biological Chemistry, 288(49): 35322–35332.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strawberry (Fragaria x ananassa, Duch.) fruit is characterized by its fast ripening and soft texture at the ripen stage, resulting in a short postharvest shelf life and high economic losses. It is generally believed that the disassembly of cell walls, the dissolution of the middle lamella and the reduction of cell turgor are the main factors determining the softening of fleshy fruits. In strawberry, several studies indicate that the solubilisation and depolymerisation of pectins, as well as the depolymerisation of xyloglucans, are the main processes occurring during ripening. Functional analyses of genes encoding pectinases such as polygalacturonase and pectate lyase also point out to the pectin fraction as a key factor involved in textural changes. All these studies have been performed with whole fruits, a complex organ containing different tissues that differ in their cell wall composition and undergo ripening at different rates. Cell cultures derived from fruits have been proposed as model systems for the study of several processes occurring during fruit ripening, such as the production of anthocyanin and its regulation by plant hormones. The main objective of this research was to obtain and characterize strawberry cell cultures to evaluate their potential use as a model for the study of the cell wall disassembly process associate with fruit ripening. Cell cultures were obtained from cortical tissue of strawberry fruits, cv. Chandler, at the stages of unripe-green, white and mature-red. Additionally, a cell culture line derived from strawberry leaves was obtained. All cultures were maintained in solid medium supplemented with 2.5 mg.l-1 2,4-D and incubated in the dark. Cell walls from the different callus lines were extracted and fractionated to obtain CDTA and sodium carbonate soluble pectin fractions, which represent polyuronides located in the middle lamella or the primary cell wall, respectively. The amounts of homogalacturonan in both fractions were estimated by ELISA using LM19 and LM20 antibodies, specific against demethylated and methyl-esterified homogalacturonan, respectively. In the CDTA fraction, the cell line from ripe fruit showed a significant lower amount of demethylated pectins than the rest of lines. By contrast, the content of methylated pectins was similar in green- and red-fruit lines, and lower than in white-fruit and leaf lines. In the sodium carbonate pectin fraction, the line from red fruit also showed the lowest amount of pectins. These preliminary results indicate that cell cultures obtained from fruits at different developmental stages differ in their cell wall composition and these differences resemble to some extent the changes that occur during strawberry softening. Experiments are in progress to further characterize cell wall extracts with monoclonal antibodies against other cell wall epitopes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies (Stavroulakis and Sfakiotakis, 1993) have shown an inhibition of propylene-induced ethylene production in kiwifruit below a critical temperature range of 11-14.8 degrees C. The aim of this research was to identify the biochemical basis of this inhibition in kiwifruit below 11-14.8 degrees C. 'Hayward' kiwifruit were treated with increasing propylene concentrations at 10 and 20 degrees C. Ethylene biosynthesis pathways and fruit ripening were investigated. Kiwifruit at 20 degrees C in air started autocatalysis of ethylene production and ripened after 19 d with a concomitant increase in respiration. Ethylene production and the respiration rise appeared earlier with increased propylene concentrations. Ripening proceeded immediately after propylene treatment, while ethylene autocatalysis needed a lag period of 24-72 h. The latter event was attributed to the delay found in the induction of 1-aminocyclopropane-1-carboxylate synthase (ACC synthase) activity and consequently to the delayed increase of l-aminocyclopropane l-carboxylic acid (ACC) content. In contrast propylene treatment induced 1-aminocyclopropane-1-carboxylate oxidase (ACC oxidase) activity with no lag period. Moreover, transcription of ACC synthase and ACC oxidase genes was active only in ethylene-producing kiwifruit at 20 degrees C. In contrast, treatment at 10 degrees C with propylene strongly inhibited ethylene production, which was attributed to the low activities of both ACC synthase and ACC oxidase as well as the low initial ACC level. Interestingly, fruit treated with propylene at 10 degrees C appeared to be able to transcribe the ACC oxidase but not the ACC synthase gene. However, propylene induced ripening of that fruit almost as rapidly as in the propylene-treated fruit at 20 degrees C. Respiration rate was increased together with propylene concentration. It is concluded that kiwifruit stored at 20 degrees C behaves as a typical climacteric fruit, while at 10 degrees C behaves like a non-climacteric fruit. We propose that the main reasons for the inhibition of the propylene induced (autocatalytic) ethylene production in kiwifruit at low temperature (less than or equal to 10 degrees C), are primarily the suppression of the propylene-induced ACC synthase gene expression and the possible post-transcriptional modification of ACC oxidase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies (Stavroulakis and Sfakiotakis, 1993) have shown an inhibition of propylene-induced ethylene production in kiwifruit below a critical temperature range of 11-14.8 degrees C. The aim of this research was to identify the biochemical basis of this inhibition in kiwifruit below 11-14.8 degrees C. 'Hayward' kiwifruit were treated with increasing propylene concentrations at 10 and 20 degrees C. Ethylene biosynthesis pathways and fruit ripening were investigated. Kiwifruit at 20 degrees C in air started autocatalysis of ethylene production and ripened after 19 d with a concomitant increase in respiration. Ethylene production and the respiration rise appeared earlier with increased propylene concentrations. Ripening proceeded immediately after propylene treatment, while ethylene autocatalysis needed a lag period of 24-72 h. The latter event was attributed to the delay found in the induction of 1-aminocyclopropane-1-carboxylate synthase (ACC synthase) activity and consequently to the delayed increase of l-aminocyclopropane l-carboxylic acid (ACC) content. In contrast propylene treatment induced 1-aminocyclopropane-1-carboxylate oxidase (ACC oxidase) activity with no lag period. Moreover, transcription of ACC synthase and ACC oxidase genes was active only in ethylene-producing kiwifruit at 20 degrees C. In contrast, treatment at 10 degrees C with propylene strongly inhibited ethylene production, which was attributed to the low activities of both ACC synthase and ACC oxidase as well as the low initial ACC level. Interestingly, fruit treated with propylene at 10 degrees C appeared to be able to transcribe the ACC oxidase but not the ACC synthase gene. However, propylene induced ripening of that fruit almost as rapidly as in the propylene-treated fruit at 20 degrees C. Respiration rate was increased together with propylene concentration. It is concluded that kiwifruit stored at 20 degrees C behaves as a typical climacteric fruit, while at 10 degrees C behaves like a non-climacteric fruit. We propose that the main reasons for the inhibition of the propylene induced (autocatalytic) ethylene production in kiwifruit at low temperature (less than or equal to 10 degrees C), are primarily the suppression of the propylene-induced ACC synthase gene expression and the possible post-transcriptional modification of ACC oxidase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of size-monodispersed indium nanoparticles via an innovative simultaneous phase transfer and ripening method is reported. The formation of nanoparticles occurs in a one-step process instead of well-known two-step phase transfer approaches. The synthesis involves the reduction of InCl3 with LiBH4 at ambient temperature and although the reduction occurs at room temperature, fine indium nanoparticles, with a mean diameter of 6.4 ± 0.4 nm, were obtained directly in non-polar n-dodecane. The direct synthesis of indium nanoparticles in n-dodecane facilitates their fast formation and enhances their size-monodispersity. In addition, the nanoparticles were highly stable for more than 2 months. The nanoparticles were characterised by dynamic light scattering (DLS), small angle X-ray scattering (SAXS), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and Fourier transform infrared (FT-IR) spectroscopy to determine their morphology, structure and phase purity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A gene encoding an elongation factor LeEF-Tsmt that participates in the protein synthesis process in mitochondria shows strong expression in ripening fruit as compared to other organs. It is strongly up-regulated during the first stages of the ripening process in parallel with the climacteric rise in respiration. LeEF-Tsmt expression is stimulated by ethylene, wounding and high temperature but ethylene-insensitive mutants exhibit normal expression. Transgenic fruit have been generated in which LeEF-Tsmt has been constitutively up- and down-regulated. Surprisingly, altering the expression of the gene by genetic transformation with antisense and sense LeEF-Tsmt constructs did not affect the pattern of respiration and ethylene production during ripening and upon wounding. In addition, expression of the alternative oxidase gene which is known to play an important role in respiratory climacteric was not affected. Possible reasons for the absence of effect on respiration of variations of LeEF-Tsmt gene expression are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most tropical fruit flies only lay into mature fruit, but a small number can also oviposit into unripe fruit. Little is known about the link between adult oviposition preference and offspring performance in such situations. In this study we examine the influence of different ripening stages of two mango Mangifera indica L. (Anacardiaceae) varieties on the preference and performance of the Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), a fly known to be able to develop in unripe fruit. Work was carried out as a series of laboratory-based choice and no-choice oviposition experiments and larval growth trials. In oviposition choice trials, female B. dorsalis demonstrated a preference for ripe fruit of mango variety Namdorkmai over variety Oakrong, but generally the dependent variable most influencing oviposition results was fruit ripening stage. Ripe and fully-ripe mangoes were most preferred for oviposition by B. dorsalis. In contrast, unripe mango was infrequently used by ovipositing females, particularly in choice trials. Consistent with the results of oviposition preference, ripe and fully-ripe mangoes were also best for offspring survival, with a higher percentage of larval survival to pupation and shorter development times in comparison to unripe mango. Changes in Total Soluble Solids, TSS, and skin toughness correlate with changing host use across the ripening stages. Regardless of the mango variety or ripeness stage, B. dorsalis had difficulty penetrating the pericarp of our experimental fruit. Larval survival was also often poor. We discuss the possibility that there may be differences in the ability of laboratory and wild flies to penetrate fruit for oviposition, or that in the field flies more regularly utilize natural fruit wounds as oviposition sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Libertine erotic novellas included a number of seductive descriptions of unfolding spaces often seen through the eyes of a narrator. Instructional volumes such as Point de lendermain by Vivant Denon (1777) aimed at the sexual education of young women and the titillation of men also followed suit. Similarly architectural theory such as Le Camus de Mézières’, The Genius of Architecture (1780) also promoted the sensuous and seductive aspects of surfaces and spatial arrangements. In the erotic settings of the cabinet, descriptions of curtains generate as much arousal as the outline of a naked body, and for some players it is the space that is desired above their lover.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spatial organization of Ge islands, grown by physical vapor deposition, on prepatterned Si(001) substrates has been investigated. The substrates were patterned prior to Ge deposition by nanoindentation. Characterization of Ge dots is performed by atomic force microscopy and scanning electron microscopy. The nanoindents act as trapping sites, allowing ripening of Ge islands at those locations during subsequent deposition and diffusion of Ge on the surface. The results show that island ordering is intrinsically linked to the nucleation and growth at indented sites and it strongly depends on pattern parameters.