950 resultados para Orthogonal polynomial


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The boxicity (cubicity) of a graph G, denoted by box(G) (respectively cub(G)), is the minimum integer k such that G can be represented as the intersection graph of axis parallel boxes (cubes) in ℝ k . The problem of computing boxicity (cubicity) is known to be inapproximable in polynomial time even for graph classes like bipartite, co-bipartite and split graphs, within an O(n 0.5 − ε ) factor for any ε > 0, unless NP = ZPP. We prove that if a graph G on n vertices has a clique on n − k vertices, then box(G) can be computed in time n22O(k2logk) . Using this fact, various FPT approximation algorithms for boxicity are derived. The parameter used is the vertex (or edge) edit distance of the input graph from certain graph families of bounded boxicity - like interval graphs and planar graphs. Using the same fact, we also derive an O(nloglogn√logn√) factor approximation algorithm for computing boxicity, which, to our knowledge, is the first o(n) factor approximation algorithm for the problem. We also present an FPT approximation algorithm for computing the cubicity of graphs, with vertex cover number as the parameter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maximum likelihood (ML) algorithms, for the joint estimation of synchronisation impairments and channel in multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) system, are investigated in this work. A system model that takes into account the effects of carrier frequency offset, sampling frequency offset, symbol timing error and channel impulse response is formulated. Cramer-Rao lower bounds for the estimation of continuous parameters are derived, which show the coupling effect among different impairments and the significance of the joint estimation. The authors propose an ML algorithm for the estimation of synchronisation impairments and channel together, using the grid search method. To reduce the complexity of the joint grid search in the ML algorithm, a modified ML (MML) algorithm with multiple one-dimensional searches is also proposed. Further, a stage-wise ML (SML) algorithm using existing algorithms, which estimate less number of parameters, is also proposed. Performance of the estimation algorithms is studied through numerical simulations and it is found that the proposed ML and MML algorithms exhibit better performance than SML algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Construction of high rate Space Time Block Codes (STBCs) with low decoding complexity has been studied widely using techniques such as sphere decoding and non Maximum-Likelihood (ML) decoders such as the QR decomposition decoder with M paths (QRDM decoder). Recently Ren et al., presented a new class of STBCs known as the block orthogonal STBCs (BOSTBCs), which could be exploited by the QRDM decoders to achieve significant decoding complexity reduction without performance loss. The block orthogonal property of the codes constructed was however only shown via simulations. In this paper, we give analytical proofs for the block orthogonal structure of various existing codes in literature including the codes constructed in the paper by Ren et al. We show that codes formed as the sum of Clifford Unitary Weight Designs (CUWDs) or Coordinate Interleaved Orthogonal Designs (CIODs) exhibit block orthogonal structure. We also provide new construction of block orthogonal codes from Cyclic Division Algebras (CDAs) and Crossed-Product Algebras (CPAs). In addition, we show how the block orthogonal property of the STBCs can be exploited to reduce the decoding complexity of a sphere decoder using a depth first search approach. Simulation results of the decoding complexity show a 30% reduction in the number of floating point operations (FLOPS) of BOSTBCs as compared to STBCs without the block orthogonal structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compressive Sensing theory combines the signal sampling and compression for sparse signals resulting in reduction in sampling rate and computational complexity of the measurement system. In recent years, many recovery algorithms were proposed to reconstruct the signal efficiently. Look Ahead OMP (LAOMP) is a recently proposed method which uses a look ahead strategy and performs significantly better than other greedy methods. In this paper, we propose a modification to the LAOMP algorithm to choose the look ahead parameter L adaptively, thus reducing the complexity of the algorithm, without compromising on the performance. The performance of the algorithm is evaluated through Monte Carlo simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For compressive sensing, we endeavor to improve the atom selection strategy of the existing orthogonal matching pursuit (OMP) algorithm. To achieve a better estimate of the underlying support set progressively through iterations, we use a least squares solution based atom selection method. From a set of promising atoms, the choice of an atom is performed through a new method that uses orthogonal projection along-with a standard matched filter. Through experimental evaluations, the effect of projection based atom selection strategy is shown to provide a significant improvement for the support set recovery performance, in turn, the compressive sensing recovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fix a prime p. Given a positive integer k, a vector of positive integers Delta = (Delta(1), Delta(2), ... , Delta(k)) and a function Gamma : F-p(k) -> F-p, we say that a function P : F-p(n) -> F-p is (k, Delta, Gamma)-structured if there exist polynomials P-1, P-2, ..., P-k : F-p(n) -> F-p with each deg(P-i) <= Delta(i) such that for all x is an element of F-p(n), P(x) = Gamma(P-1(x), P-2(x), ..., P-k(x)). For instance, an n-variate polynomial over the field Fp of total degree d factors nontrivially exactly when it is (2, (d - 1, d - 1), prod)- structured where prod(a, b) = a . b. We show that if p > d, then for any fixed k, Delta, Gamma, we can decide whether a given polynomial P(x(1), x(2), ..., x(n)) of degree d is (k, Delta, Gamma)-structured and if so, find a witnessing decomposition. The algorithm takes poly(n) time. Our approach is based on higher-order Fourier analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we consider polynomial representability of functions defined over , where p is a prime and n is a positive integer. Our aim is to provide an algorithmic characterization that (i) answers the decision problem: to determine whether a given function over is polynomially representable or not, and (ii) finds the polynomial if it is polynomially representable. The previous characterizations given by Kempner (Trans. Am. Math. Soc. 22(2):240-266, 1921) and Carlitz (Acta Arith. 9(1), 67-78, 1964) are existential in nature and only lead to an exhaustive search method, i.e. algorithm with complexity exponential in size of the input. Our characterization leads to an algorithm whose running time is linear in size of input. We also extend our result to the multivariate case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work sets forth a `hybrid' discretization scheme utilizing bivariate simplex splines as kernels in a polynomial reproducing scheme constructed over a conventional Finite Element Method (FEM)-like domain discretization based on Delaunay triangulation. Careful construction of the simplex spline knotset ensures the success of the polynomial reproduction procedure at all points in the domain of interest, a significant advancement over its precursor, the DMS-FEM. The shape functions in the proposed method inherit the global continuity (Cp-1) and local supports of the simplex splines of degree p. In the proposed scheme, the triangles comprising the domain discretization also serve as background cells for numerical integration which here are near-aligned to the supports of the shape functions (and their intersections), thus considerably ameliorating an oft-cited source of inaccuracy in the numerical integration of mesh-free (MF) schemes. Numerical experiments show the proposed method requires lower order quadrature rules for accurate evaluation of integrals in the Galerkin weak form. Numerical demonstrations of optimal convergence rates for a few test cases are given and the method is also implemented to compute crack-tip fields in a gradient-enhanced elasticity model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given a function from Z(n) to itself one can determine its polynomial representability by using Kempner function. In this paper we present an alternative characterization of polynomial functions over Z(n) by constructing a generating set for the Z(n)-module of polynomial functions. This characterization results in an algorithm that is faster on average in deciding polynomial representability. We also extend the characterization to functions in several variables. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study is to determine an optimal trailing edge flap configuration and flap location to achieve minimum hub vibration levels and flap actuation power simultaneously. An aeroelastic analysis of a soft in-plane four-bladed rotor is performed in conjunction with optimal control. A second-order polynomial response surface based on an orthogonal array (OA) with 3-level design describes both the objectives adequately. Two new orthogonal arrays called MGB2P-OA and MGB4P-OA are proposed to generate nonlinear response surfaces with all interaction terms for two and four parameters, respectively. A multi-objective bat algorithm (MOBA) approach is used to obtain the optimal design point for the mutually conflicting objectives. MOBA is a recently developed nature-inspired metaheuristic optimization algorithm that is based on the echolocation behaviour of bats. It is found that MOBA inspired Pareto optimal trailing edge flap design reduces vibration levels by 73% and flap actuation power by 27% in comparison with the baseline design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compressed Sensing (CS) is an elegant technique to acquire signals and reconstruct them efficiently by solving a system of under-determined linear equations. The excitement in this field stems from the fact that we can sample at a rate way below the Nyquist rate and still reconstruct the signal provided some conditions are met. Some of the popular greedy reconstruction algorithms are the Orthogonal Matching Pursuit (OMP), the Subspace Pursuit (SP) and the Look Ahead Orthogonal Matching Pursuit (LAOMP). The LAOMP performs better than the OMP. However, when compared to the SP and the OMP, the computational complexity of LAOMP is higher. We introduce a modified version of the LAOMP termed as Reduced Look Ahead Orthogonal Matching Pursuit (Reduced LAOMP). Reduced LAOMP uses prior information from the results of the OMP and the SP in the quest to speedup the look ahead strategy in the LAOMP. Monte Carlo simulations of this algorithm deliver promising results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modeling the spatial variability that exists in pavement systems can be conveniently represented by means of random fields; in this study, a probabilistic analysis that considers the spatial variability, including the anisotropic nature of the pavement layer properties, is presented. The integration of the spatially varying log-normal random fields into a linear-elastic finite difference analysis has been achieved through the expansion optimal linear estimation method. For the estimation of the critical pavement responses, metamodels based on polynomial chaos expansion (PCE) are developed to replace the computationally expensive finite-difference model. The sparse polynomial chaos expansion based on an adaptive regression-based algorithm, and enhanced by the combined use of the global sensitivity analysis (GSA) is used, with significant savings in computational effort. The effect of anisotropy in each layer on the pavement responses was studied separately, and an effort is made to identify the pavement layer wherein the introduction of anisotropic characteristics results in the most significant impact on the critical strains. It is observed that the anisotropy in the base layer has a significant but diverse effect on both critical strains. While the compressive strain tends to be considerably higher than that observed for the isotropic section, the tensile strains show a decrease in the mean value with the introduction of base-layer anisotropy. Furthermore, asphalt-layer anisotropy also tends to decrease the critical tensile strain while having little effect on the critical compressive strain. (C) 2015 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of two curved beam finite element models based on coupled polynomial displacement fields is investigated for out-of-plane vibration of arches. These two-noded beam models employ curvilinear strain definitions and have three degrees of freedom per node namely, out-of-plane translation (v), out-of-plane bending rotation (theta(z)) and torsion rotation (theta(s)). The coupled polynomial interpolation fields are derived independently for Timoshenko and Euler-Bernoulli beam elements using the force-moment equilibrium equations. Numerical performance of these elements for constrained and unconstrained arches is compared with the conventional curved beam models which are based on independent polynomial fields. The formulation is shown to be free from any spurious constraints in the limit of `flexureless torsion' and `torsionless flexure' and hence devoid of flexure and torsion locking. The resulting stiffness and consistent mass matrices generated from the coupled displacement models show excellent convergence of natural frequencies in locking regimes. The accuracy of the shear flexibility added to the elements is also demonstrated. The coupled polynomial models are shown to perform consistently over a wide range of flexure-to-shear (EI/GA) and flexure-to-torsion (EI/GJ) stiffness ratios and are inherently devoid of flexure, torsion and shear locking phenomena. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper an explicit guidance law for the powered descent phase of the soft lunar landing is presented. The descent trajectory, expressed in polynomial form is fixed based on the boundary conditions imposed by the precise soft landing mission. Adapting an inverse model based approach, the guidance command is computed from the known spacecraft trajectory. The guidance formulation ensures the vertical orientation of the spacecraft during touchdown. Also a closed form relation for the final flight time is proposed. The final time is expressed as a function of initial position and velocity of the spacecraft ( at the start of descent) and also depends on the desired landing site. To ensure the fuel minimum descent the proposed explicit method is extended to optimal guidance formulation. The effectiveness of the proposed guidance laws are demonstrated with simulation results.