988 resultados para Organometallic catalysts
Resumo:
The use of fac-[Mo(CO)(3)(MeCN)(eta(2)-L(1))] (1a) {L(1) = Ph(2)PN(Pr-i)PPh(DMP)}(2) as a precursor to metalloligands and bimetallic, heterotrimetallic, and heptacoordinated complexes is reported. The reaction of 1a with diphosphazane, dppa, or a diphosphinoalkane such as dppm or dppe yields the fac-eta(1)-diphosphine substituted metalloligands, fac-[Mo(CO)(3)(eta(2)-L(1))(eta(1)-PXP)] {PXP = dppa (2), dppm (3), and dppe (4)}. These undergo isomerization to yield the corresponding mer-diphosphine complexes (5-7). Oxidation of the uncoordinated phosphorus atom of the mer-eta(1)-dppm-substituted complex eventually provides mer-[Mo(CO)(3)-(eta(2)-L(1)){eta(1)-Ph(2)PCH(2)P(O)Ph(2)}](8). The structure of the latter complex has been confirmed by single crystal X-ray diffraction {triclinic system, P ($) over bar 1; a = 11.994(3), b = 14.807(2), c = 15.855(3) Angstrom; alpha = 114.24(1), beta = 91.35(2), and gamma = 98.95(1)degrees; Z = 2, 4014 data (F-0 > 5 sigma(F-0)), R = 0.066, R(W) = 0.069}. Treatment of the dppe metalloligand 7 with [PtCl2(COD)] yields the heterotrimetallic complex cis-[PtCl2{mer-[Mo(CO)(3)(eta(2)-L(1))(eta(1)-dppe]}(2)] (9). Attempts to prepare a related trimetallic complex with the dppm-containing metalloligand were unsuccessful; only the tetracarbonyl complex cis-[Mo(CO)(4)(eta(2)-L(1))] (1b) and cis-[PtCl2(eta(2)-dppm)] were obtained. Reaction of la with dppe in the ratio 2:1 yields the mer-mer dinuclear complex [{mer-[Mo(CO)(3)(eta(2)-L(1))]}(2)(mu-dppe)] (10) bridged by dppe. Oxidation of 1a with iodine yields the Mo(II) heptacoordinated complex [MoI2(CO)(2)(eta(3)-L(1))] (11) with tridentate PPN coordination. The same Mo(II) complex 11 is also obtained by the direct oxidation of the tetracarbonyl complex cis-[Mo(CO)(4)(eta(2)-L(1))] (1b) with iodine. The structure of 11 has been confirmed by X-ray diffraction studies {monoclinic system, Cc; a = 10.471(2), b = 19.305(3), c = 17.325(3) Angstrom; beta = 95.47(2)degrees; Z = 4, 3153 data (F-0 > 5 sigma(F-0)), R = 0.049, R(W) = 0.051}. This complex exhibits an unusual capped-trigonal prismatic geometry around the metal. A similar heptacoordinated complex 12 with a chiral diphosphazane ligand {L(3) = (S,R)-P(h)2PN-(*CHMePh)*PPh(DMP)} has also been synthesized.
Resumo:
Reactions of [Rh(COD)Cl](2) with the ligand RN(PX(2))(2) (1: R=C6H5; X=OC6H5) give mono- or disubstituted complexes of the type [Rh-2(COD)Cl-2{eta(2)-C6H5N(P(OC6H5)(2))(2)}-] or [RhCl{eta(2)-C6H5N(P(OC6H5)(2))(2)}](2), depending on the reaction conditions. Reaction of 1 with [Rh(CO)(2)Cl](2) gives the symmetric binuclear complex, [Rh(CO)Cl{mu-C6H5N(P(OC6H5)(2))(2)}], whereas the same reaction with 2 (R=CH3; X=OC6H5) leads to the formation of an asymmetric complex of the type [Rh(CO)(mu-CO)Cl{mu-CH3N(P(OC6H5)(2))(2)}] containing both terminal and bridging CO groups. Interestingly the reaction of 3 (R=C6H5, X = OC6H4Br-p) with either [Rh(COD)Cl](2) or [Rh(CO)(2)Cl](2) leads only to the formation of the chlorine bridged binuclear complex, [RhCl{eta(2)-C6H5N(P(OC6H4Br-p)(2))(2)}](2). The structural elucidation of the complexes was carried out by elemental analyses, IR and P-31 NMR spectroscopic data.
Resumo:
Interaction of CH3OH with Cu clusters deposited on ZnO films grown on a Zn foil as well as on a ZnO(0001)Zn crystal, has been examined by X-ray photoelectron spectroscopy. On clean Cu clusters, reversible molecular adsorption or formation of CH3O is observed. However if the Cu clusters are pretreated with oxygen, both CH3O and HCOO- species are produced. Model Cu/ZnO catalyst surfaces, containing both Cu1+ and Cu-0 species, show interesting oxidation properties. On a Cu-0-rich catalyst surface, only CH3O species is formed on interaction with CH3OH. On a Cu1+-rich surface, however, HCOO- ion is the predominant species.
Resumo:
The diphosphazane ligands of the type, (C20H12O2)PN(R)P(E)Y2 (R = CHMe2 or (S)-*CHMePh; E = lone pair or S; Y2 = O2C20H12 or Y = OC6H5 or OC6H4Me-4 or OC6H4OMe-4 or OC6H4But-4 or C6H5) bearing axially chiral 1,1'-binaphthyl-2,2′-dioxy moiety have been synthesised. The structure and absolute configuration of a diastereomeric palladium complex, [PdCl2{ηsu2}-((O2C20H12)PN((S)-*CHMePh)PPh2] has been determined by X-ray crystallography. The reactions of [CpRu(PPh3)2Cl] with various symmetrical and unsymmetrical diphosphazanes of the type, X2PN(R)PYY′ (R = CHMe2 or (S)-*CHMePh; X = C6H5 or X2 = O2C20H12; Y=Y′= C6H5 or Y = C6H5, Y′ = OC6H4Me-4 or OC6H3Me2-3,5 or N2C3HMe2-3,5) yield several diastereomeric neutral or cationic half-sandwich ruthenium complexes which contain a stereogenic metal center. In one case, the absolute configuration of a trichiral ruthenium complex, viz. [Cp*Ruη2-Ph2PN((S)-*CHMePh)*PPh (N2C3HMe2-3,5)Cl] is established by X-ray diffraction. The reactions of Ru3(CO)12 with the diphosphazanes (C20H12O2)PN(R)PY2 (R = CHMe2orMe; Y2=O2C20H12or Y= OC6H5 or OC6H4Me-4 or OC6H4OMe-4 or OC6H4But-4 or C6H5) yield the triruthenium clusters [Ru3(CO)10{η-(O2C20H12)PN(R)PY2}], in which the diphosphazane ligand bridges two metal centres. Palladium allyl chemistry of some of these chiral ligands has been investigated. The structures of isomeric η3-allyl palladium complexes, [Pd(η3-l,3-R′2-C3H3){η2-(rac)-(02C20H12)PN(CHMe2)PY2}](PF6) (R′ = Me or Ph; Y = C6H5 or OC6H5) have been elucidated by high field two-dimensional NMR spectroscopic and X-ray crystallographic studies.
Resumo:
Reaction of [CpRu(PPh3)(2)Cl] (1) {Cp = eta(5)-(C5H5)} with X2PN(CHMe2) PYY' {X = Y = Y' = Ph (L-1); X = Y = Ph, Y' = OC6H4Me-4 (L-4); X = Y = Ph, Y' = OC6H3Me2- 3,5 (L-5); X = Y = Ph, Y' = N2C3HMe2 (L-6)} yields the cationic chelate complexes, [CpRu(eta(2)-(X2PN(CHMe2) PYY')) PPh3] Cl. On the other hand, the reaction of 1 with X2PN(CHMe2)PYY' {X = Ph, YY' = O2C6H4(L-3)} gives the complex, [CpRu(eta(1)-L-2)(2)PPh3] Cl. Both types of complexes are formed with X2PN(CHMe2) PYY' {X = Ph, YY' = O2C6H4 (L-3)}. The reaction of 1 with (R),(S)-(H12C20O2) PN(CHMe2) PPh2 (L-7) yields both cationic and neutral complexes, [CpRu{eta(2)-(L-7)} PPh3] Cl and [CpRu{eta(1)-(L-7)}(2)PPh3] Cl and [CpRu{eta(2)-(L-7)}Cl]. The reactions of optically pure diphosphazane, Ph2PN(*CHMePh) PPhY (Y = Ph (L-8); Y = N2C3HMe2-3,5 (L-9)) with 1 give the neutral and cationic ruthenium complexes, [CpRu{eta(2)-(Ph2PN(R) PPhY)} Cl] and [CpRu{eta(2)-(Ph2PN(R)PPhY)} PPh3] Cl. "Chiral-at-metal" ruthenium complexes of diphosphazanes have been synthesized with high diastereoselectivity. The absolute configuration of a novel ruthenium complex, (SCSPRRu)-[(eta(5)-C5H5) Ru*{eta(2)-(Ph2PN(*CHMePh)P*Ph( N2C3HMe2-3,5))} Cl] possessing three chiral centers, is established by X-ray crystallography. The reactions of [CpRu{eta(2)-(L-8)} Cl] with mono or diphosphanes in the presence of NH4PF6 yield the cationic complexes, [CpRu{eta(2)-(L-8)}{eta(1)-(P)}] PF6 {P = P(OMe)(3), PPh3, Ph2P(CH2)(n)PPh2 (n = 1 or 2)}.
Resumo:
The catalytic oxidation and decomposition of NH3 have been carried out over combustion synthesized Al2O3 and CeO2 supported Pt, Pd and Ag catalysts using temperature programmed reaction (TPR) technique in a packed bed tubular reactor. Metals are ionically dispersed over CeO2 and fine metal particles are found on Al2O3. NH3 oxidation occurs over 1% Pt/Al2O3, 1% Pd/Al2O3 and 1% Ag/Al2O3 at 175, 270 and 350 C respectively producing N-2, NO, N2O and H2O, whereas 1% Pt/CeO2, 1% Pd/CeO2 and 1% Ag/CeO2 give N-2 along with NO, N2O and H2O at 200, 225 and 250degreesC respectively. N-2 predominates over other nitrogen-containing products during the reaction on all catalysts. At less O-2 concentration, N-2 and H2O are the only products obtained during NH3 Oxidation. NH3 decomposition over all the catalysts occurs above 450degreesC.
Resumo:
The structure and chemical environment of Cu in Cu/CeO2 catalysts synthesized by the solution combustion method have been investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), electron paramagnetic resonance (EPR) spectroscopy, X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), and extended X-ray fine structure (EXAFS) spectroscopy. High-resolution XRD studies of 3 and 5 atom % Cu/CeO2 do not show CuO lines in their respective patterns. The structure could be refined for the composition Ce1-xCuxO2-delta (x = 0.03 and 0.05; delta similar to 0.13 and 0.16) in the fluorite structure with 5-8% oxide ion vacancy. High-resolution TEM did not show CuO particles in 5 atom % Cu/CeO2. EPR as well as XPS studies confirm the presence of Cu2+ species in the CeO2 matrix. Redox potentials of Cu species in the CeO2 matrix are lower than those in CuO. EXAFS investigations of these catalysts show an average coordination number of 3 around the Cu2+ ion in the first shell at a distance of 1.96 Angstrom, indicating the O2- ion vacancy around the Cu2+ ion. The Cu-O bond length also decreases compared to that in CuO. The second and third shell around the Cu2+ ion in the catalysts are attributed to -Cu2+-O2--Cu2+ - at 2.92 Angstrom and -Cu2+-O2--Ce4+- at the distance of 3.15 Angstrom, respectively. The present results provide direct evidence for the formation of a Ce1-xCuxO2-delta type of solid solution phase having -square-Cu2+-O-Ce4+- kind of linkages.
Resumo:
In the framework of a project aimed at developing a reliable hydrogen generator for mobile polymer electrolyte fuel cells (PEFCs), particular emphasis has been addressed to the analysis of catalysts able to assure high activity and stability in transient operations (frequent start-up and shut-down cycles). In this paper, the catalytic performance of 1 at.% Pt/ceria samples prepared by coprecipitation, impregnation and combustion, has been evaluated in the partial oxidation of methane. Methane conversion and hydrogen selectivity of 96 and 99%, respectively, associated with high stability during 100h of reaction under operative conditions (start-up and shut-down cycles), have been obtained. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
In last 40 years, catalysis for NO (x) removal from exhaust gas has received much attention to achieve pollution free environment. CeO(2) has been found to play a major role in the area of exhaust catalysis due to its unique redox properties. In last several years, we have been exploring an entirely new approach of dispersing noble metal ions in CeO(2) and TiO(2) for redox catalysis. We have extensively studied Ce(1-x) M (x) O(2-delta) (M = Pd, Pt, Rh), Ce(1-x-y) A (x) M (y) O(2-delta) (A = Ti, Zr, Sn, Fe; M = Pd, Pt) and Ti(1-x) M (x) O(2-delta) (M = Pd, Pt, Rh, Ru) catalysts for exhaust catalysis especially NO reduction and CO oxidation, structure-property relation and mechanism of catalytic reactions. In these catalysts, lower valent noble metal ion substitution in CeO(2) and TiO(2) creates noble metal ionic sites and oxide ion vacancy. NO gets molecularly adsorbed on noble metal ion site and dissociatively adsorbed on oxide ion vacancy site. Dissociative chemisorption of NO on oxide ion vacancy leads to preferential conversion of NO to N(2) instead of N(2)O over these catalysts. It has been demonstrated that these new generation noble metal ionic catalysts (NMIC) are much more catalytically active than conventional nano crystalline noble metal catalysts especially for NO reduction.
Resumo:
Carbon nanotubes produced by the treatment of Mg1−xMxAl2O4 (M = Fe, Co, or Ni; x = 0.1, 0.2, 0.3, or 0.4) spinels with an H2–CH4 mixture at 1070 °C have been investigated systematically. The grains of the oxide-metal composite particles are uniformly covered by a weblike network of carbon nanotube bundles, several tens of micrometers long, made up of single-wall nanotubes with a diameter close to 4 nm. Only the smallest metal particles (<5 nm) are involved in the formation of the nanotubes. A macroscopic characterization method involving surface area measurements and chemical analysis has been developed in order to compare the different nanotube specimens. An increase in the transition metal content of the catalyst yields more carbon nanotubes (up to a metal content of 10.0 wt% or x = 0.3), but causes a decrease in carbon quality. The best compromise is to use 6.7 wt% of metal (x = 0.2) in the catalyst. Co gives superior results with respect to both the quantity and quality of the nanotubes. In the case of Fe, the quality is notably hampered by the formation of Fe3C particles.
Resumo:
Palladium and platinum dichloride complexes of a series of symmetrically and unsymmetrically substituted 25,26;27,28-dibridged p-tert-butyl-calix[4]arene bisphosphites in which two proximal phenolic oxygen atoms of p-tert-butyl-or p-H-calix[4]arene are connected to a P(OR) ( R = substituted phenyl) moiety have been synthesized. The palladium dichloride complexes of calix[4]arene bisphosphites bearing sterically bulky aryl substituents undergo cyclometalation by C-C or C-H bond scission. An example of cycloplatinated complex is also reported. The complexes have been characterized by NMR spectroscopic and single crystal X-ray diffraction studies. During crystallization of the palladium dichloride complex of a symmetrically substituted calix[4]arene bisphosphite in dichloromethane, insertion of oxygen occurs into the Pd-P bond to give a P,O-coordinated palladium dichloride complex. The calix[4]arene framework in these bisphosphites and their metal complexes adopt distorted cone conformation; the cone conformation is more flattened in the metal complexes than in the free calix[4]arene bisphosphites. Some of these cyclometalated complexes proved to be active catalysts for Heck and Suzuki C-C cross-coupling reactions but, on an average, the yields are only modest. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Ce(0.65)Fe(0.33)Pt(0.02)O(2-delta) and Ce(0.67)Fe(0.33)O(2-delta) have been synthesized by a new low temperature sonochemical method using diethylenetriamine as a complexing agent. Due to the substitution of Fe and Pt ions in CeO(2), lattice oxygen is activated in Ce(0.67)Fe(0.33)O(2-delta) and Ce(0.65)Fe(0.33)Pt(0.02)O(2-delta). Hydrogen uptake studies show strong reduction peaks at 125 C in Ce(0.65)Fe(0.33)Pt(0.02)O(2-delta) against a hydrogen uptake peak at 420 degrees C in Ce(0.67)Fe(0.33)O(2-delta). Fe substituted ceria, Ce(0.67)Fe(0.33)O(2-delta) itself acts as a catalyst for CO oxidation and water gas shift (WGS) reactions at moderate temperatures. The rate of CO conversion in WGS with Pt free Ce(0.65)Fe(0.33)O(2-delta) is 2.8 mu mol g(-1) s(-1) at 450 C and with Pt substituted Ce(0.65)Fe(0.33)Pt(0.02)O(2-delta) is 4.05 mu mol g(-1) s(-1) at 275 degrees C. Due to the synergistic interaction of the Pt ion with Ce and Fe ions in Ce(0.65)Fe(0.33)Pt(0.02)O(2-delta), the catalyst showed much higher activity for CO oxidation and WGS reactions compared to Ce(0.67)Fe(0.33)O(2-delta). A reverse WGS reaction does not occur over Ce(0.65)Fe(0.33)Pt(0.02)O(2-delta). The catalyst also does not deactivate even when operated for a long time. Nearly 100% conversion of CO to CO(2) with 100% H(2) selectivity is observed in WGS reactions even up to 550 degrees C. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Microwave-based methods are widely employed to synthesize metal nanoparticles on various substrates. However, the detailed mechanism of formation of such hybrids has not been addressed. In this paper, we describe the thermodynamic and kinetic aspects of reduction of metal salts by ethylene glycol under microwave heating conditions. On the basis of this analysis, we identify the temperatures above which the reduction of the metal salt is thermodynamically favorable and temperatures above which the rates of homogeneous nucleation of the metal and the heterogeneous nucleation of the metal on supports are favored. We delineate different conditions which favor the heterogeneous nucleation of the metal on the supports over homogeneous nucleation in the solvent medium based on the dielectric loss parameters of the solvent and the support and the metal/solvent and metal/support interfacial energies. Contrary to current understanding, we show that metal particles can be selectively formed on the substrate even under situations where the temperature of the substrate Is lower than that of the surrounding medium. The catalytic activity of the Pt/CeO(2) and Pt/TiO(2) hybrids synthesized by this method for H(2) combustion reaction shows that complete conversion is achieved at temperatures as low as 100 degrees C with Pt-CeO(2) catalyst and at 50 degrees C with Pt-TiO(2) catalyst. Our method thus opens up possibilities for rational synthesis of high-activity supported catalysts using a fast microwave-based reduction method.