926 resultados para Optimal Control Problems
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We consider a second-order variational problem depending on the covariant acceleration, which is related to the notion of Riemannian cubic polynomials. This problem and the corresponding optimal control problem are described in the context of higher order tangent bundles using geometric tools. The main tool, a presymplectic variant of Pontryagin’s maximum principle, allows us to study the dynamics of the control problem.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this paper, we consider the stochastic optimal control problem of discrete-time linear systems subject to Markov jumps and multiplicative noises under two criteria. The first one is an unconstrained mean-variance trade-off performance criterion along the time, and the second one is a minimum variance criterion along the time with constraints on the expected output. We present explicit conditions for the existence of an optimal control strategy for the problems, generalizing previous results in the literature. We conclude the paper by presenting a numerical example of a multi-period portfolio selection problem with regime switching in which it is desired to minimize the sum of the variances of the portfolio along the time under the restriction of keeping the expected value of the portfolio greater than some minimum values specified by the investor. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
For quantum systems with linear dynamics in phase space much of classical feedback control theory applies. However, there are some questions that are sensible only for the quantum case: Given a fixed interaction between the system and the environment what is the optimal measurement on the environment for a particular control problem? We show that for a broad class of optimal (state- based) control problems ( the stationary linear-quadratic-Gaussian class), this question is a semidefinite program. Moreover, the answer also applies to Markovian (current-based) feedback.
Resumo:
The main aims of this work are the development and the validation of one generic algorithm to provide the optimal control of small power wind generators. That means up to 40 kW and blades with fixed pitch angle. This algorithm allows the development of controllers to fetch the wind generators at the desired operational point in variable operating conditions. The problems posed by the variable wind intensity are solved using the proposed algorithm. This is done with no explicit measure of the wind velocity, and so no special equipment or anemometer is required to compute or measure the wind velocity.
Resumo:
Dissertação apresentada para obtenção do grau de Doutor em Matemática na especialidade de Equações Diferenciais, pela Universidade Nova de Lisboa,Faculdade de Ciências e Tecnologia
Resumo:
Dissertação para obtenção do Grau de Doutor em Matemática
Resumo:
The objective of this paper is to correct and improve the results obtained by Van der Ploeg (1984a, 1984b) and utilized in the theoretical literature related to feedback stochastic optimal control sensitive to constant exogenous risk-aversion (see, Jacobson, 1973, Karp, 1987 and Whittle, 1981, 1989, 1990, among others) or to the classic context of risk-neutral decision-makers (see, Chow, 1973, 1976a, 1976b, 1977, 1978, 1981, 1993). More realistic and attractive, this new approach is placed in the context of a time-varying endogenous risk-aversion which is under the control of the decision-maker. It has strong qualitative implications on the agent's optimal policy during the entire planning horizon.
Resumo:
Optimal control theory is a powerful tool for solving control problems in quantum mechanics, ranging from the control of chemical reactions to the implementation of gates in a quantum computer. Gradient-based optimization methods are able to find high fidelity controls, but require considerable numerical effort and often yield highly complex solutions. We propose here to employ a two-stage optimization scheme to significantly speed up convergence and achieve simpler controls. The control is initially parametrized using only a few free parameters, such that optimization in this pruned search space can be performed with a simplex method. The result, considered now simply as an arbitrary function on a time grid, is the starting point for further optimization with a gradient-based method that can quickly converge to high fidelities. We illustrate the success of this hybrid technique by optimizing a geometric phase gate for two superconducting transmon qubits coupled with a shared transmission line resonator, showing that a combination of Nelder-Mead simplex and Krotov’s method yields considerably better results than either one of the two methods alone.
Resumo:
Esta tesis está enfocada al diseño y validación de controladores robustos que pueden reducir de una manera efectiva las vibraciones structurales producidas por perturbaciones externas tales como terremotos, fuertes vientos o cargas pesadas. Los controladores están diseñados basados en teorías de control tradicionalamente usadas en esta area: Teoría de estabilidad de Lyapunov, control en modo deslizante y control clipped-optimal, una técnica reciente mente introducida : Control Backstepping y una que no había sido usada antes: Quantitative Feedback Theory. La principal contribución al usar las anteriores técnicas, es la solución de problemas de control estructural abiertos tales como dinámicas de actuador, perturbaciones desconocidas, parametros inciertos y acoplamientos dinámicos. Se utilizan estructuras típicas para validar numéricamente los controladores propuestos. Especificamente las estructuras son un edificio de base aislada, una plataforma estructural puente-camión y un puente de 2 tramos, cuya configuración de control es tal que uno o mas problemas abiertos están presentes. Se utilizan tres prototipos experimentales para implementar los controladores robustos propuestos, con el fin de validar experimentalmente su efectividad y viabilidad. El principal resultado obtenido con la presente tesis es el diseño e implementación de controladores estructurales robustos que resultan efectivos para resolver problemas abiertos en control estructural tales como dinámicas de actuador, parámetros inciertos, acoplamientos dinámicos, limitación de medidas y perturbaciones desconocidas.
Resumo:
This paper considers left-invariant control systems defined on the Lie groups SU(2) and SO(3). Such systems have a number of applications in both classical and quantum control problems. The purpose of this paper is two-fold. Firstly, the optimal control problem for a system varying on these Lie Groups, with cost that is quadratic in control is lifted to their Hamiltonian vector fields through the Maximum principle of optimal control and explicitly solved. Secondly, the control systems are integrated down to the level of the group to give the solutions for the optimal paths corresponding to the optimal controls. In addition it is shown here that integrating these equations on the Lie algebra su(2) gives simpler solutions than when these are integrated on the Lie algebra so(3).
Resumo:
This note investigates the motion control of an autonomous underwater vehicle (AUV). The AUV is modeled as a nonholonomic system as any lateral motion of a conventional, slender AUV is quickly damped out. The problem is formulated as an optimal kinematic control problem on the Euclidean Group of Motions SE(3), where the cost function to be minimized is equal to the integral of a quadratic function of the velocity components. An application of the Maximum Principle to this optimal control problem yields the appropriate Hamiltonian and the corresponding vector fields give the necessary conditions for optimality. For a special case of the cost function, the necessary conditions for optimality can be characterized more easily and we proceed to investigate its solutions. Finally, it is shown that a particular set of optimal motions trace helical paths. Throughout this note we highlight a particular case where the quadratic cost function is weighted in such a way that it equates to the Lagrangian (kinetic energy) of the AUV. For this case, the regular extremal curves are constrained to equate to the AUV's components of momentum and the resulting vector fields are the d'Alembert-Lagrange equations in Hamiltonian form.
Resumo:
This paper aims with the use of linear matrix inequalities approach (LMIs) for application in active vibration control problems in smart strutures. A robust controller for active damping in a panel was designed with piezoelectrical actuators in optimal locations for illustration of the main proposal. It was considered, in the simulations of the closed-loop, a model identified by eigensystem realization algorithm (ERA) and reduced by modal decomposition. We tested two differents techniques to solve the problem. The first one uses LMI approach by state-feedback based in an observer design, considering several simultaneous constraints as: a decay rate, limited input on the actuators, bounded output peak (output energy) and robustness to parametic uncertainties. The results demonstrated the vibration attenuation in the structure by controlling only the first modes and the increased damping in the bandwidth of interest. However, it is possible to occur spillover effects, because the design has not been done considering the dynamic uncertainties related with high frequencies modes. In this sense, the second technique uses the classical H. output feedback control, also solved by LMI approach, considering robustness to residual dynamic to overcome the problem found in the first test. The results are compared and discussed. The responses shown the robust performance of the system and the good reduction of the vibration level, without increase mass.