945 resultados para Optical measurements.
Resumo:
"October 1980."
Resumo:
Photon counting induces an effective non-linear optical phase shift in certain states derived by linear optics from single photons. Although this non-linearity is non-deterministic, it is sufficient in principle to allow scalable linear optics quantum computation (LOQC). The most obvious way to encode a qubit optically is as a superposition of the vacuum and a single photon in one mode-so-called 'single-rail' logic. Until now this approach was thought to be prohibitively expensive (in resources) compared to 'dual-rail' logic where a qubit is stored by a photon across two modes. Here we attack this problem with real-time feedback control, which can realize a quantum-limited phase measurement on a single mode, as has been recently demonstrated experimentally. We show that with this added measurement resource, the resource requirements for single-rail LOQC are not substantially different from those of dual-rail LOQC. In particular, with adaptive phase measurements an arbitrary qubit state a alpha/0 > + beta/1 > can be prepared deterministically.
Resumo:
We have systematically measured the differential stress-optic coefficient, ?C, in a number of poly(methyl methacrylate) (PMMA) fibers drawn with different stress, ranging from 2 up to 27 MPa. ?C was determined in transverse illumination by measuring the dependence of birefringence on additional axial stress applied to the fiber. Our results show that ?C in PMMA fibers has a negative sign and ranges from -4.5 to -4.5×10-12 Pa-1, depending on the drawing stress. Increase of the drawing stress results in greater initial fiber birefringence and lower ?C.
Resumo:
A novel technique for determining the polarisation mode dispersion in optical fibres is described. The technique makes use of a sinusoidally frequency modulated source, and is applied to the measurement of the beat length of highly birefringent monomode fibre. The temporal delay between the two modes of the fibre is measured with a resolution of approximately ±0.6 ps.
Resumo:
A few years ago, some of the authors of the paper demonstrated the resonance of optical antennas in the visible frequencies. The results of that paper were obtained using experimental techniques that were primarily developed for the measurement of antenna-coupled detectors in the infrared. In the present paper, we show the results of spatial-response mapping obtained by using a dedicated measurement station for the characterization of optical antennas in the visible. At the same time, the bottleneck in the spatial responsivity calculation represented by the beam characterization has been approached from a different perspective. The proposed technique uses a collection of knife edge measurements in order to avoid the use of any model of the laser beam irradiance. By taking all this into account we present the spatial responsivity of optical antennas measured with high spatial resolution in the visible.
Resumo:
Clinical optical motion capture allows us to obtain kinematic and kinetic outcome measures that aid clinicians in diagnosing and treating different pathologies affecting healthy gait. The long term aim for gait centres is for subject-specific analyses that can predict, prevent, or reverse the effects of pathologies through gait retraining. To track the body, anatomical segment coordinate systems are commonly created by applying markers to the surface of the skin over specific, bony anatomy that is manually palpated. The location and placement of these markers is subjective and precision errors of up to 25mm have been reported [1]. Additionally, the selection of which anatomical landmarks to use in segment models can result in large angular differences; for example angular differences in the trunk can range up to 53o for the same motion depending on marker placement [2]. These errors can result in erroneous kinematic outcomes that either diminish or increase the apparent effects of a treatment or pathology compared to healthy data. Our goal was to improve the accuracy and precision of optical motion capture outcome measures. This thesis describes two separate studies. In the first study we aimed to establish an approach that would allow us to independently quantify the error among trunk models. Using this approach we determined if there was a best model to accurately track trunk motion. In the second study we designed a device to improve precision for test, re-test protocols that would also reduce the set-up time for motion capture experiments. Our method to compare a kinematically derived centre of mass velocity to one that was derived kinetically was successful in quantifying error among trunk models. Our findings indicate that models that use lateral shoulder markers as well as limit the translational degrees of freedom of the trunk through shared pelvic markers result in the least amount of error for the tasks we studied. We also successfully reduced intra- and inter-operator anatomical marker placement errors using a marker alignment device. The improved accuracy and precision resulting from the methods established in this thesis may lead to increased sensitivity to changes in kinematics, and ultimately result in more consistent treatment outcomes.
Resumo:
Purpose: to determine whether pupil dilation affects biometric measurements and intraocular lens (IOL) power calculation made using the new swept-source optical coherence tomography-based optical biometer (IOLMaster 700©; Carl Zeiss Meditec, Jena, Germany). Procedures: eighty-one eyes of 81 patients evaluated for cataract surgery were prospectively examined using the IOLMaster 700© before and after pupil dilation with tropicamide 1%. The measurements made were: axial length (AL), central corneal thickness (CCT), aqueous chamber depth (ACD), lens thickness (LT), mean keratometry (MK), white-to-white distance (WTW) and pupil diameter (PD). Holladay II and SRK/T formulas were used to calculate IOL power. Agreement between measurement modes (with and without dilation) was assessed through intraclass correlation coefficients (ICC) and Bland-Altman plots. Results: mean patient age was 75.17 ± 7.54 years (range: 57–92). Of the variables determined, CCT, ACD, LT and WTW varied significantly according to pupil dilation. Excellent intraobserver correlation was observed between measurements made before and after pupil dilation. Mean IOL power calculation using the Holladay 2 and SRK/T formulas were unmodified by pupil dilation. Conclusions: the use of pupil dilation produces statistical yet not clinically significant differences in some IOLMaster 700© measurements. However, it does not affect mean IOL power calculation.
Resumo:
Suggestions that peripheral imagery may affect the development of refractive error have led to interest in the variation in refraction and aberration across the visual field. It is shown that, if the optical system of the eye is rotationally symmetric about an optical axis which does not coincide with the visual axis, measurements of refraction and aberration made along the horizontal and vertical meridians of the visual field will show asymmetry about the visual axis. The departures from symmetry are modelled for second-order aberrations, refractive components and third-order coma. These theoretical results are compared with practical measurements from the literature. The experimental data support the concept that departures from symmetry about the visual axis in the measurements of crossed-cylinder astigmatism J45 and J180 are largely explicable in terms of a decentred optical axis. Measurements of the mean sphere M suggest, however, that the retinal curvature must differ in the horizontal and vertical meridians.
Resumo:
In situ near-IR transmittance measurements have been used to characterize the density of trapped electrons in dye-sensitized solar cells (DSCs). Measurements have been made under a range experimental conditions including during open circuit photovoltage decay and during recording of the IV characteristic. The optical cross section of electrons at 940 nm was determined by relating the IR absorbance to the density of trapped electrons measured by charge extraction. The value, σn = 5.4 × 10-18 cm2, was used to compare the trapped electron densities in illuminated DSCs under open and short circuit conditions in order to quantify the difference in the quasi Fermi level, nEF. It was found that nEF for the cells studied was 250 meV over wide range of illuminat on intensities. IR transmittance measurements have also been used to quantify shifts in conduction band energy associated with dye adsorption.
Resumo:
It is possible to estimate the depth of focus (DOF) of the eye directly from wavefront measurements using various retinal image quality metrics (IQMs). In such methods, DOF is defined as the range of defocus error that degrades the retinal image quality calculated from IQMs to a certain level of the maximum value. Although different retinal image quality metrics are used, currently there have been two arbitrary threshold levels adopted, 50% and 80%. There has been limited study of the relationship between these threshold levels and the actual measured DOF. We measured the subjective DOF in a group of 17 normal subjects, and used through-focus augmented visual Strehl ratio based on optical transfer function (VSOTF) derived from their wavefront aberrations as the IQM. For each subject, a VSOTF threshold level was derived that would match the subjectively measured DOF. Significant correlation was found between the subject’s estimated threshold level and the HOA RMS (Pearson’s r=0.88, p<0.001). The linear correlation can be used to estimate the threshold level for each individual subject, subsequently leading to a method for estimating individual’s DOF from a single measurement of their wavefront aberrations.
Resumo:
In this paper, a method has been developed for estimating pitch angle, roll angle and aircraft body rates based on horizon detection and temporal tracking using a forward-looking camera, without assistance from other sensors. Using an image processing front-end, we select several lines in an image that may or may not correspond to the true horizon. The optical flow at each candidate line is calculated, which may be used to measure the body rates of the aircraft. Using an Extended Kalman Filter (EKF), the aircraft state is propagated using a motion model and a candidate horizon line is associated using a statistical test based on the optical flow measurements and the location of the horizon. Once associated, the selected horizon line, along with the associated optical flow, is used as a measurement to the EKF. To test the accuracy of the algorithm, two flights were conducted, one using a highly dynamic Uninhabited Airborne Vehicle (UAV) in clear flight conditions and the other in a human-piloted Cessna 172 in conditions where the horizon was partially obscured by terrain, haze and smoke. The UAV flight resulted in pitch and roll error standard deviations of 0.42◦ and 0.71◦ respectively when compared with a truth attitude source. The Cessna flight resulted in pitch and roll error standard deviations of 1.79◦ and 1.75◦ respectively. The benefits of selecting and tracking the horizon using a motion model and optical flow rather than naively relying on the image processing front-end is also demonstrated.
Resumo:
We present a novel method and instrument for in vivo imaging and measurement of the human corneal dynamics during an air puff. The instrument is based on high-speed swept source optical coherence tomography (ssOCT) combined with a custom adapted air puff chamber from a non-contact tonometer, which uses an air stream to deform the cornea in a non-invasive manner. During the short period of time that the deformation takes place, the ssOCT acquires multiple A-scans in time (M-scan) at the center of the air puff, allowing observation of the dynamics of the anterior and posterior corneal surfaces as well as the anterior lens surface. The dynamics of the measurement are driven by the biomechanical properties of the human eye as well as its intraocular pressure. Thus, the analysis of the M-scan may provide useful information about the biomechanical behavior of the anterior segment during the applanation caused by the air puff. An initial set of controlled clinical experiments are shown to comprehend the performance of the instrument and its potential applicability to further understand the eye biomechanics and intraocular pressure measurements. Limitations and possibilities of the new apparatus are discussed.
Resumo:
This paper outlines our literature review background, investigation and practical application utilizing a precise optical survey level and total station technology for a specialist industrial measurement application. The practical part of the project was to measure and check specific critical features of the Industrial JIG assembly table used by the Queensland University of Technology (QUT) Motorsport group. The JIG is used in constructing a new Formula SAE race-car frame each year and is used throughout the racing season to check the production frame for twists, bends and potential stresses. The industrial JIG table required two survey approaches, firstly determination of the overall flatness throughout its’ steel base surface. Secondly was the validation of verticality of the steel uprights used to support and hold the race-car frame in place during construction and checking alignment for key suspension components. In addition the investigation brings realisations that there are far more accurate, efficient and economical technologies to be harnessed in industrial metrology.