927 resultados para Ophthalmic surfaces
Resumo:
The equilibrium geometry, electronic structure and energetic stability of Bi nanolines on clean and hydrogenated Si(001) surfaces have been examined by means of ab initio total energy calculations and scanning tunnelling microscopy. For the Bi nanolines on a clean Si surface the two most plausible structural models, the Miki or M model (Miki et al 1999 Phys. Rev. B 59 14868) and the Haiku or H model (Owen et al 2002 Phys. Rev. Lett. 88 226104), have been examined in detail. The results of the total energy calculations support the stability of the H model over the M model, in agreement with previous theoretical results. For Bi nanolines on the hydrogenated Si(001) surface, we find that an atomic configuration derived from the H model is also more stable than an atomic configuration derived from the M model. However, the energetically less stable (M) model exhibits better agreement with experimental measurements for equilibrium geometry. The electronic structures of the H and M models are very similar. Both models exhibit a semiconducting character, with the highest occupied Bi-derived bands lying at ~0.5 eV below the valence band maximum. Simulated and experimental STM images confirm that at a low negative bias the Bi lines exhibit an 'antiwire' property for both structural models.
Resumo:
Although a wide range of periodic surface nets can be grown on low index silicon surfaces, only a few of these have quasi-one dimensional symmetry. If high index silicon surfaces, such as (553) and (557), are used instead, the surface unit cell contains steps. It is possible to fabricate a number of quasi-one dimensional nanoline systems on the terraces and some of these have nested energy bands near the Fermi level. These nano-scale systems may support exotic many-electron states produced by enhanced electron correlations and a reduction in electron screening in one spatial dimension. In this paper, our groups' experimental and theoretical studies of nanolines phases, grown on both low index and vicinal silicon surfaces are reviewed. These studies give us insight into the electronic properties of artificial nanoline structures.
Resumo:
We investigated the influence of different gas environments on the fabrication of surfaces, homogeneously covered with equally sized and spaced micro-structures. Two types of structures have been successfully micro-machined with a femtosecond laser on titanium surfaces in various atmospheres. The surface chemistry of samples machined in oxygen and helium shows TiO2, while machining in nitrogen leads to an additional share of TiN. The actual surface structure was found to vary significantly as a function of the gas environment. We found that the ablated particles and their surface triggered two consecutive events: The optical properties of the gas environment became non-isotropic which then led to the pulse intensity being redistributed throughout the cross section of the laser beam. Additionally, the effective intensity was further reduced for TiN surfaces due to TiN's high reflectivity. Thus, the settings for the applied raster-scanning machining method had to be adjusted for each gas environment to produce comparable structures. In contrast to previous studies, where only noble gases were found suitable to produce homogeneous patches, we obtained them in an oxygen environment.
Resumo:
The surface properties of solid state pharmaceutics are of critical importance. Processing modifies the surfaces and effects surface roughness, which influences the performance of the final dosage form in many different levels. Surface roughness has an effect on, e.g., the properties of powders, tablet compression and tablet coating. The overall goal of this research was to understand the surface structures of pharmaceutical surfaces. In this context the specific purpose was to compare four different analysing techniques (optical microscopy, scanning electron microscopy, laser profilometry and atomic force microscopy) in various pharmaceutical applications where the surfaces have quite different roughness scale. This was done by comparing the image and roughness analysing techniques using powder compacts, coated tablets and crystal surfaces as model surfaces. It was found that optical microscopy was still a very efficient technique, as it yielded information that SEM and AFM imaging are not able to provide. Roughness measurements complemented the image data and gave quantitative information about height differences. AFM roughness data represents the roughness of only a small part of the surface and therefore needs other methods like laser profilometer are needed to provide a larger scale description of the surface. The new developed roughness analysing method visualised surface roughness by giving detailed roughness maps, which showed local variations in surface roughness values. The method was able to provide a picture of the surface heterogeneity and the scale of the roughness. In the coating study, the laser profilometer results showed that the increase in surface roughness was largest during the first 30 minutes of coating when the surface was not yet fully covered with coating. The SEM images and the dispersive X-ray analysis results showed that the surface was fully covered with coating within 15 to 30 minutes. The combination of the different measurement techniques made it possible to follow the change of surface roughness and development of polymer coating. The optical imaging techniques gave a good overview of processes affecting the whole crystal surface, but they lacked the resolution to see small nanometer scale processes. AFM was used to visualize the nanoscale effects of cleaving and reveal the full surface heterogeneity, which underlies the optical imaging. Ethanol washing changed small (nanoscale) structure to some extent, but the effect of ethanol washing on the larger scale was small. Water washing caused total reformation of the surface structure at all levels.
Resumo:
Based on XPS and UVPS studies, it is shown that oxygen is preferentially adsorbed molecularly in the singlet state on Cu and Ag surfaces containing presorbed chlorine. Adsorption of chlorine on Cu and Ag surfaces containing presorbed atomic oxygen causes a disappearance of the oxygen. Extended Hückel calculations predict the observed behaviour.
Resumo:
We demonstrate ordered array formation of Au nanoparticles by controlled solid-state dewetting of a metal film on stepped alumina substrates. In situ transmission electron microscopy studies reveal that the dewetting process starts with nucleation of ordered dry regions on the substrate. The chemical potential difference between concave and convex surface regions induces anisotropic metal diffusion leading to the formation of nanowires in the valleys. The nanowires fragment due to Rayleigh instability forming arrays of metal nanoparticles on the substrate. The length scale of reconstruction relative to the starting film thickness is an important parameter in controlling the spatial order of the nanoparticles.
Resumo:
A pin-on-disc machine was used to wear Al-Si alloy pins under dry conditions. Unmodified and modified binary alloys and commercial multi-component alloys were tested. The surfaces of the worn alloys were examined by scanning electron microscopy to identify distinct topographical features to aid elucidation of the mechanisms of wear.
Resumo:
XPS studies of the interaction of carbon monoxide with surfaces of Fe, Co and Ni indicate that at 300 K, the disproportionation reaction is prominent up to exposures of 103 L giving rise to high surface concentrations of carbon. At higher exposures and higher temperatures, dissociation of carbon monoxide accompanied by the formation of surface oxide layers becomes more prominent. In the case of copper, disproportionation is prominent up to 104 L even at 500 K followed by dissociation at higher exposures. These results are also supported by Auger spectroscopic studies.
Resumo:
He II UPS and XPS study of oxygen adsorption on Ni and barium-dosed Ni and Cu surfaces at 300 K show two types of oxygen species which are assigned to O2- and O1- (ad).
Resumo:
In this paper, we present results on water flow past randomly textured hydrophobic surfaces with relatively large surface features of the order of 50 µm. Direct shear stress measurements are made on these surfaces in a channel configuration. The measurements indicate that the flow rates required to maintain a shear stress value vary substantially with water immersion time. At small times after filling the channel with water, the flow rates are up to 30% higher compared with the reference hydrophilic surface. With time, the flow rate gradually decreases and in a few hours reaches a value that is nearly the same as the hydrophilic case. Calculations of the effective slip lengths indicate that it varies from about 50 µm at small times to nearly zero or “no slip” after a few hours. Large effective slip lengths on such hydrophobic surfaces are known to be caused by trapped air pockets in the crevices of the surface. In order to understand the time dependent effective slip length, direct visualization of trapped air pockets is made in stationary water using the principle of total internal reflection of light at the water-air interface of the air pockets. These visualizations indicate that the number of bright spots corresponding to the air pockets decreases with time. This type of gradual disappearance of the trapped air pockets is possibly the reason for the decrease in effective slip length with time in the flow experiments. From the practical point of usage of such surfaces to reduce pressure drop, say, in microchannels, this time scale of the order of 1 h for the reduction in slip length would be very crucial. It would ultimately decide the time over which the surface can usefully provide pressure drop reductions. ©2009 American Institute of Physics
Resumo:
Near infrared spectroscopy (NIRS) combined with multivariate analysis techniques was applied to assess phenol content of European oak. NIRS data were firstly collected directly from solid heartwood surfaces: in doing so, the spectra were recorded separately from the longitudinal radial and the transverse section surfaces by diffuse reflectance. The spectral data were then pretreated by several pre-processing procedures, such as multiplicative scatter correction, first derivative, second derivative and standard normal variate. The tannin contents of sawmill collected from the longitudinal radial and transverse section surfaces were determined by quantitative extraction with water/methanol (1:4, by vol). Then, total phenol contents in tannin extracts were measured by the Folin-Ciocalteu method. The NIR data were correlated against the Folin-Ciocalteu results. Calibration models built with partial least squares regression displayed strong correlation - as expressed by high determination correlation coefficient (r2) and high ratio of performance to deviation (RPD) - between measured and predicted total phenols content, and weak calibration and prediction errors (RMSEC, RMSEP). The best calibration was provided with second derivative spectra (r2 value of 0.93 for the longitudinal radial plane and of 0.91 for the transverse section plane). This study illustrates that the NIRS technique when used in conjunction with multivariate analysis could provide reliable, quick and non-destructive assessment of European oak heartwood extractives.
Resumo:
Water adsorbs molecularly on a clean Zn(0001) surface; on a surface covered with atomic oxygen, however, hydroxyl species is produced due to proton abstraction by the surface oxygen atoms. Methanol, molecularly adsorbed on a clean surface at 80 K, transforms to methoxy species above 110 K. On an atomic oxygen-covered surface, adsorbed methanol gives rise to methoxy species and water, the latter arising from proton abstraction. HCHO adsorbs molecularly at 80 K on both clean as well as oxygen-covered surfaces and polymerizes at higher temperatures. Formic acid does not adsorb on a clean Zn surface, but on an oxygen-covered surface gives rise to formate and hydroxyl species.
Resumo:
For N2 on a clean Fe surface, the adsorbed precursor in a parallel orientation becomes predominant around 110 K, while at lower temperatures it coexists with a weakly adsorbed species. On a Ba-promoted Fe surface, however, N2 is present exclusively in the precursor state in the temperature range 80–150 K following moderate exposure. Besides exhibiting a low N-N stretching frequency of 1530 cm−1, the precursor shows a clear separation between the 5σ and 1π levels in the UPS; the precursor dissociates to give a nitridic species around 160 K.
Resumo:
The Murmur of Surfaces presents the creative outcomes of my PhD research Thesis, Surface Materials and Aspects of Care. As a perspective exhibition at Caboolture Regional Gallery, it also provided me the opportunity to evaluate this more recent body of work alongside earlier work that was formally distinct, highlighting in some ways, a shift from the primacy of form to the agency of matter. The installation of works led the discussion of surfaces to one of space.
Resumo:
The Best Use Modelling for Sustainable Australian Sports Field Surfaces project has achieved significant success. The project has attracted participation from councils throughout Australia, with in excess of 300 sports fields evaluated from 18 councils to date. An important project component is the derivation of a recommended standard procedure for specifying the performance of playing surfaces. An associated step has been to establish recommended playing surface performance standards for community level sports fields. The derived modelling also provides information on the expected usage and associated costs of different sports surface development options. This is expected to assist the Australian turf production industry through demonstrating to councils that cost effective natural turf options exist that can meet higher usage expectation (as a viable alternative to synthetic turf). A web-accessed data base system will be made available to councils from January 2010 on (reference to www.passturf.com). This system will enable participating councils to record and analyse field performance over time. The system is considered world-leading, and will help keep the Australian parks industry to the international forefront. Tools developed as part of the project offer councils the opportunity to internally assess the performance of their current sports field provision, to identify any deficiencies and to determine the best corrective measure if any deficiency is identified. This is expected to offer community benefits to both sports facility providers and facility user groups. In turn this will aid the provision of affordable community access to safe and good quality playing surfaces. Tools and associated information material will be made available to councils throughout Australia by the end of this year, via the Parks and Leisure Aust. web site. The Best Use Modelling Project is work in progress. On-going input will be needed to ensure the web-accessed database software is as user friendly as possible, new performance testing data will need to be inputted, and tools provided to participating councils updated. Through the support of HAL there is now a well-structured, nationally-supported system in place for benchmarking playing surfaces and for assisting councils to optimise their resource allocation to sports field upgrade or maintenance work.