893 resultados para Operating room technicians.
Resumo:
Regional anesthesia is an established method to provide analgesia for patients in the operating room and during the postoperative phase. While regional anesthesia offers unique advantages, as shown by the recent military experience, it is not commonly utilized in the prehospital or emergency department setting. Most often, regional anesthesia techniques for traumatized patients are first utilized in the operating room for procedural anesthesia or for postoperative pain control. While infiltration or single nerve block procedures are often used by surgeons or emergency medicine physicians in the preoperative phase, more advanced techniques such as plexus block procedures or regional catheter placements are more commonly performed by anesthesiologists for surgery or postoperative pain control. These regional techniques offer advantages over intravenous anesthesia, not just in the perioperative phase but also in the acute phase of traumatized patients and during the initial transport of injured patients. Anesthesiologists have extensive experience with regional techniques and are able to introduce regional anesthesia into settings outside the operating room and in the early treatment phases of trauma patients.
Resumo:
We reviewed the use of advanced display technologies for monitoring in anesthesia. Researchers are investigating displays that integrate information and that, in some cases, also deliver the results continuously to the anesthesiologist. Integrated visual displays reveal higher-order properties of patient state and speed in responding to events, but their benefits under an intensely timeshared load is unknown. Head-mounted displays seem to shorten the time to respond to changes, but their impact on peripheral awareness and attention is unknown. Continuous auditory displays extending pulse oximetry seem to shorten response times and improve the ability to time-share other tasks, but their integration into the already noisy operative environment still needs to be tested. We reviewed the advantages and disadvantages of the three approaches, drawing on findings from other fields, such as aviation, to suggest outcomes where there are still no results for the anesthesia context. Proving that advanced patient monitoring displays improve patient outcomes is difficult, and a more realistic goal is probably to prove that such displays lead to better situational awareness, earlier responding, and less workload, all of which keep anesthesia practice away from the outer boundaries of safe operation.
Resumo:
A vision of the future of intraoperative monitoring for anesthesia is presented-a multimodal world based on advanced sensing capabilities. I explore progress towards this vision, outlining the general nature of the anesthetist's monitoring task and the dangers of attentional capture. Research in attention indicates different kinds of attentional control, such as endogenous and exogenous orienting, which are critical to how awareness of patient state is maintained, but which may work differently across different modalities. Four kinds of medical monitoring displays are surveyed: (1) integrated visual displays, (2) head-mounted displays, (3) advanced auditory displays and (4) auditory alarms. Achievements and challenges in each area are outlined. In future research, we should focus more clearly on identifying anesthetists' information needs and we should develop models of attention in different modalities and across different modalities that are more capable of guiding design. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Purpose - The purpose of this paper is to develop an integrated quality management model that identifies problems, suggests solutions, develops a framework for implementation and helps to evaluate dynamically healthcare service performance. Design/methodology/approach - This study used the logical framework analysis (LFA) to improve the performance of healthcare service processes. LFA has three major steps - problems identification, solution derivation, and formation of a planning matrix for implementation. LFA has been applied in a case-study environment to three acute healthcare services (Operating Room utilisation, Accident and Emergency, and Intensive Care) in order to demonstrate its effectiveness. Findings - The paper finds that LFA is an effective method of quality management of hospital-based healthcare services. Research limitations/implications - This study shows LFA application in three service processes in one hospital. This very limited population sample needs to be extended. Practical implications - The proposed model can be implemented in hospital-based healthcare services in order to improve performance. It may also be applied to other services. Originality/value - Quality improvement in healthcare services is a complex and multi-dimensional task. Although various quality management tools are routinely deployed for identifying quality issues in healthcare delivery, they are not without flaws. There is an absence of an integrated approach, which can identify and analyse issues, provide solutions to resolve those issues, develop a project management framework to implement those solutions. This study introduces an integrated and uniform quality management tool for healthcare services. © Emerald Group Publishing Limited.
Resumo:
Purpose - The purpose of the paper is to develop an integrated quality management model, which identifies problems, suggests solutions, develops a framework for implementation and helps evaluate performance of health care services dynamically. Design/methodology/approach - This paper uses logical framework analysis (LFA), a matrix approach to project planning for managing quality. This has been applied to three acute healthcare services (Operating room utilization, Accident and emergency, and Intensive care) in order to demonstrate its effectiveness. Findings - The paper finds that LFA is an effective method of quality management of hospital-based healthcare services. Research limitations/implications - This paper shows LFA application in three service processes in one hospital. However, ideally this is required to be tested in several hospitals and other services as well. Practical implications - In the paper the proposed model can be practised in hospital-based healthcare services for improving performance. Originality/value - The paper shows that quality improvement in healthcare services is a complex and multi-dimensional task. Although various quality management tools are routinely deployed for identifying quality issues in health care delivery and corrective measures are taken for superior performance, there is an absence of an integrated approach, which can identify and analyze issues, provide solutions to resolve those issues, develop a project management framework (planning, monitoring, and evaluating) to implement those solutions in order to improve process performance. This study introduces an integrated and uniform quality management tool. It integrates operations with organizational strategies. © Emerald Group Publishing Limited.
Resumo:
Healthcare services available these days deploy high technology to satisfy both internal and external customers by continuously improving various quality parameters. Quality improvement in healthcare services is a complex and multidimensional task. Although various quality management tools are routinely deployed for identifying quality issues in healthcare delivery, there is absence of an integrated approach, which can identify and analyse issues, provide solutions to resolve those issues and develop a project management framework to implement and evaluate those solutions. This study introduces an integrated and uniform quality management framework for healthcare services. This study uses the Logical Framework Analysis (LFA) to improve the performance of healthcare services. LFA has three major steps - problem identification, solution derivation and formation of a planning matrix for implementation and evaluation. LFA has been applied in a case study environment to three acute healthcare services (Operating Room (OR) utilisation, Accident and Emergency (A&E) and intensive care) in order to demonstrate its effectiveness. Copyright © 2007 Inderscience Enterprises Ltd.
Resumo:
The results of research the intelligence multimodal man-machine interface and virtual reality means for assistive medical systems including computers and mechatronic systems (robots) are discussed. The gesture translation for disability peoples, the learning-by-showing technology and virtual operating room with 3D visualization are presented in this report and were announced at International exhibition "Intelligent and Adaptive Robots–2005".
Resumo:
In this paper a surgical robotic device for cochlear implantation surgery is described that is able to discriminate tissue interfaces and other controlling parameters ahead of a drill tip. The advantage in surgery is that tissues at interfaces can be preserved. The smart tool is able to control interaction with respect to the flexing tissue to avoid penetration control the extent of protrusion with respect to the real-time position of the tissue. To interpret drilling conditions, and conditions leading up to breakthrough at a tissue interface, the sensing scheme used enables discrimination between the variety of conditions posed in the drilling environment. The result is a robust fully autonomous system able to respond to tissue type, behaviour and deflection in real-time. The paper describes the robotic tool that has been designed to be used in the surgical environment where it has been used in the operating room.
Resumo:
© 2014, Canadian Anesthesiologists' Society.Optimal perioperative fluid management is an important component of Enhanced Recovery After Surgery (ERAS) pathways. Fluid management within ERAS should be viewed as a continuum through the preoperative, intraoperative, and postoperative phases. Each phase is important for improving patient outcomes, and suboptimal care in one phase can undermine best practice within the rest of the ERAS pathway. The goal of preoperative fluid management is for the patient to arrive in the operating room in a hydrated and euvolemic state. To achieve this, prolonged fasting is not recommended, and routine mechanical bowel preparation should be avoided. Patients should be encouraged to ingest a clear carbohydrate drink two to three hours before surgery. The goals of intraoperative fluid management are to maintain central euvolemia and to avoid excess salt and water. To achieve this, patients undergoing surgery within an enhanced recovery protocol should have an individualized fluid management plan. As part of this plan, excess crystalloid should be avoided in all patients. For low-risk patients undergoing low-risk surgery, a “zero-balance” approach might be sufficient. In addition, for most patients undergoing major surgery, individualized goal-directed fluid therapy (GDFT) is recommended. Ultimately, however, the additional benefit of GDFT should be determined based on surgical and patient risk factors. Postoperatively, once fluid intake is established, intravenous fluid administration can be discontinued and restarted only if clinically indicated. In the absence of other concerns, detrimental postoperative fluid overload is not justified and “permissive oliguria” could be tolerated.
Resumo:
Interacting with a computer system in the operating room (OR) can be a frustrating experience for a surgeon, who currently has to verbally delegate to an assistant every computer interaction task. This indirect mode of interaction is time consuming, error prone and can lead to poor usability of OR computer systems. This thesis describes the design and evaluation of a joystick-like device that allows direct surgeon control of the computer in the OR. The device was tested extensively in comparison to a mouse and delegated dictation with seven surgeons, eleven residents, and five graduate students. The device contains no electronic parts, is easy to use, is unobtrusive, has no physical connection to the computer and makes use of an existing tool in the OR. We performed a user study to determine its effectiveness in allowing a user to perform all the tasks they would be expected to perform on an OR computer system during a computer-assisted surgery. Dictation was found to be superior to the joystick in qualitative measures, but the joystick was preferred over dictation in user satisfaction responses. The mouse outperformed both joystick and dictation, but it is not a readily accepted modality in the OR.
Resumo:
Questa tesi riguarda il problema della schedulazione degli interventi nel blocco operatorio di un presidio ospedaliero, noto anche come Operating Theatre Planning & Scheduling. Il blocco operatorio è la struttura che eroga servizi a più alto impatto sui costi di un presidio ospedaliero ed è legato ad attività ad alto rischio. E' quindi fondamentale gestire in modo ottimale questa risorsa. In questa tesi, si considera come caso studio l'applicazione reale di un presidio ospedaliero dell'Emilia Romagna con un orizzonte temporale di una settimana, ovvero la cosiddetta programmazione operativa. L'obiettivo è quello di ottenere un utilizzo efficiente del blocco operatorio, garantendo al contempo la priorità agli interventi più urgenti. Data la complessità del problema, vengono proposti algoritmi euristici che permettano di ottenere buone soluzioni in tempi di calcolo ridotti. Studi precedenti hanno infatti evidenziato la difficoltà di trovare soluzioni ottime al problema, mediante l'utilizzo di solver commerciali per modelli di Programmazione Lineare Intera, senza introdurre ipotesi semplificative. Sono stati elaborati tre algoritmi euristici costruttivi di tipo multi-start che permettono di generare soluzioni ammissibili con diverse caratteristiche. Gli algoritmi si differenziano principalmente per le modalità con cui collocano gli interventi nel tempo disponibile delle risorse (induction room, operating room, recovery room), cercando di migliorarne l’utilizzazione e dando priorità ai pazienti più urgenti. Gli algoritmi sono stati implementati utilizzando il linguaggio JAVA e sono stati testati su istanze realistiche fornite dal presidio ospedaliero. I risultati hanno evidenziato un alto grado di utilizzazione delle sale operatorie, un fattore molto rilevante per una ottimale gestione del blocco operatorio. E' stata, infine, svolta un'analisi di sensitività alla variabilità delle durate.
Resumo:
Type 1 neurofibromatosis is a relatively common inherited disease of the nervous system, with a frequency of almost 1 in 3000. It is associated with neurofibromas of various sites. Our case report is about the surgical management of a giant neurofibroma of the right gluteal fold in a 46-year-old male with NF1. The patient presented with increasing edema and accelerated growth of the mass; he underwent percutaneous embolization of lesion vessels that induced necrosis of the neurofibroma. The patient was taken to the operating room, where surgical resection of the bulk of the lesion was undertaken. The postoperative course was complicated by delayed wound closure managed with antibiotics and vacuum-assisted wound closure. Giant neurofibromas similar to this tumor require complex preoperative, intraoperative and postoperative management strategies. Surgical debulk is best managed with preoperative percutaneous embolization that help to avoid surgical bleeding. Postoperative delayed wound closure was managed with the application of negative pressure in a closed environment that triggers granulation and tissue formation.
Resumo:
The single electron transistor (SET) is a Coulomb blockade device, whose operation is based on the controlled manipulation of individual electrons. Single electron transistors show immense potential to be used in future ultra lowpower devices, high density memory and also in high precision electrometry. Most SET devices operate at cryogenic temperatures, because the charging energy is much smaller than the thermal oscillations. The room temperature operation of these devices is possible with sub- 10nm nano-islands due to the inverse dependance of charging energy on the radius of the conducting nano-island. The fabrication of sub-10nm features with existing lithographic techniques is a technological challenge. Here we present the results for the first room temperature operating SET device fabricated using Focused Ion Beam deposition technology. The SET device, incorporates an array of tungsten nano-islands with an average diameter of 8nm. The SET devices shows clear Coulomb blockade for different gate voltages at room temperature. The charging energy of the device was calculated to be 160.0 meV; the capacitance per junction was found to be 0.94 atto F; and the tunnel resistance per junction was calculated to be 1.26 G Ω. The tunnel resistance is five orders of magnitude larger than the quantum of resistance (26 k Ω) and allows for the localization of electrons on the tungsten nano-island. The lower capacitance of the device combined with the high tunnel resistance, allows for the Coulomb blockade effects observed at room temperature. Different device configurations, minimizing the total capacitance of the device have been explored. The effect of the geometry of the nano electrodes on the device characteristics has been presented. Simulated device characteristics, based on the soliton model have been discussed. The first application of SET device as a gas sensor has been demonstrated.
Resumo:
The single-electron transistor (SET) is one of the best candidates for future nano electronic circuits because of its ultralow power consumption, small size and unique functionality. SET devices operate on the principle of Coulomb blockade, which is more prominent at dimensions of a few nano meters. Typically, the SET device consists of two capacitively coupled ultra-small tunnel junctions with a nano island between them. In order to observe the Coulomb blockade effects in a SET device the charging energy of the device has to be greater that the thermal energy. This condition limits the operation of most of the existing SET devices to cryogenic temperatures. Room temperature operation of SET devices requires sub-10nm nano-islands due to the inverse dependence of charging energy on the radius of the conducting nano-island. Fabrication of sub-10nm structures using lithography processes is still a technological challenge. In the present investigation, Focused Ion Beam based etch and deposition technology is used to fabricate single electron transistors devices operating at room temperature. The SET device incorporates an array of tungsten nano-islands with an average diameter of 8nm. The fabricated devices are characterized at room temperature and clear Coulomb blockade and Coulomb oscillations are observed. An improvement in the resolution limitation of the FIB etching process is demonstrated by optimizing the thickness of the active layer. SET devices with structural and topological variation are developed to explore their impact on the behavior of the device. The threshold voltage of the device was minimized to ~500mV by minimizing the source-drain gap of the device to 17nm. Vertical source and drain terminals are fabricated to realize single-dot based SET device. A unique process flow is developed to fabricate Si dot based SET devices for better gate controllability in the device characteristic. The device vi parameters of the fabricated devices are extracted by using a conductance model. Finally, characteristic of these devices are validated with the simulated data from theoretical modeling.
Resumo:
Increased pressure to control costs and increased competition has prompted health care managers to look for tools to effectively operate their institutions. This research sought a framework for the development of a Simulation-Based Decision Support System (SB-DSS) to evaluate operating policies. A prototype of this SB-DSS was developed. It incorporates a simulation model that uses real or simulated data. ER decisions have been categorized and, for each one, an implementation plan has been devised. Several issues of integrating heterogeneous tools have been addressed. The prototype revealed that simulation can truly be used in this environment in a timely fashion because the simulation model has been complemented with a series of decision-making routines. These routines use a hierarchical approach to organize the various scenarios under which the model may run and to partially reconfigure the ARENA model at run time. Hence, the SB-DSS tailors its responses to each node in the hierarchy.