981 resultados para Open Field


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Methods for reliable evaluation of spinal cord (SC) injury in rats at short periods (2 and 24 h) after lesion were tested to characterize the mechanisms implicated in primary SC damage. We measured the physiological changes occurring after several procedures for producing SC injury, with particular emphasis on sensorimotor functions. Segmental and suprasegmental reflexes were tested in 39 male Wistar rats weighing 250-300 g divided into three control groups that were subjected to a) anesthesia, b) dissection of soft prevertebral tissue, and c) laminectomy of the vertebral segments between T10 and L1. In the lesion group the SC was completely transected, hemisected or subjected to vertebral compression. All animals were evaluated 2 and 24 h after the experimental procedure by the hind limb motility index, Bohlman motor score, open-field, hot-plate, tail flick, and paw compression tests. The locomotion scale proved to be less sensitive than the sensorimotor tests. A reduction in exploratory movements was detected in the animals 24 h after the procedures. The hot-plate was the most sensitive test for detecting sensorimotor deficiencies following light, moderate or severe SC injury. The most sensitive and simplest test of reflex function was the hot-plate. The hemisection model promoted reproducible moderate SC injury which allowed us to quantify the resulting behavior and analyze the evolution of the lesion and its consequences during the first 24 h after injury. We conclude that hemisection permitted the quantitation of behavioral responses for evaluation of the development of deficits after lesions. Hind limb evaluation scores and spontaneous exploration events provided a sensitive index of immediate injury effects after SC lesion at 2 and 24 h. Taken together, locomotion scales, open-field, and hot-plate tests represent reproducible, quantitatively sensitive methods for detecting functional deficiencies within short periods of time, indicating their potential for the study of cellular mechanisms of primary injury and repair after traumatic SC injury.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of the present study was to determine if the acute behavioral effects of cocaine acutely administered intraperitoneally (ip) at doses of 5, 10 and 20 mg/kg on white male CF1 mice, 90 days of age, would be influenced by leptin acutely administered ip (at doses of 5, 10 and 20 µg/kg) or by endogenous leptin production enhanced by a high-fat diet. The acute behavioral effects of cocaine were evaluated in open-field, elevated plus-maze and forced swimming tests. Results were compared between a group of 80 mice consuming a balanced diet and a high-fat diet, and a group of 80 mice fed a commercially available rodent chow formula (Ralston Purina) but receiving recombinant leptin (rLeptin) or saline ip. Both the high-fat-fed and rLeptin-treated mice showed decreased locomotion in the open-field test, spent more time in the open arms of the elevated plus-maze and showed less immobility time in the forced swimming test (F(1,68) = 7.834, P = 0.007). There was an interaction between diets and cocaine/saline treatments in locomotion (F(3,34) = 3.751, P = 0.020) and exploration (F(3,34) = 3.581, P = 0.024). These results suggest that anxiolytic effects and increased general activity were induced by leptin in cocaine-treated mice and that low leptin levels are associated with behavioral depression. Chronic changes in diet composition producing high leptin levels or rLeptin treatment may result in an altered response to cocaine in ethologic tests that measure degrees of anxiety and depression, which could be attributed to an antagonistic effect of leptin.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dopaminergic neurotransmission is involved in the regulation of sleep. In particular, the nigrostriatal pathway is an important center of sleep regulation. We hypothesized that dopaminergic neurons located in substantia nigra pars compacta (SNpc) could be activated by gentle handling, a method to obtain sleep deprivation (SD). Adult male C57/BL6J mice (N = 5/group) were distributed into non-SD (NSD) or SD groups. SD animals were subjected to SD once for 1 or 3 h by gentle handling. Two experiments were performed. The first determined the activation of SNpc neurons after SD, and the second examined the same parameters after pharmacologically induced dopaminergic depletion using intraperitoneal reserpine (2 mg/kg). After 1 or 3 h, SD and NSD mice were subjected to motor evaluation using the open field test. Immediately after the behavioral test, the mice were perfused intracardially to fix the brain and for immunohistochemical analysis of c-Fos protein expression within the SNpc. The open field test indicated that SD for 1 or 3 h did not modify motor behavior. However, c-Fos protein expression was increased after 1 h of SD compared with the NSD and 3-h SD groups. These immunohistochemistry data indicate that these periods of SD are not able to produce dopaminergic supersensitivity. Nevertheless, the increased expression of c-Fos within the SNpc suggests that dopaminergic nigral activation was triggered by SD earlier than motor responsiveness. Dopamine-depleted mice (experiment 2) exhibited a similar increase of c-Fos expression compared to control animals indicating that dopamine neurons are still activated in the 1-h SD group despite the exhaustion of dopamine. This finding suggests that this range (2-5-fold) of neuronal activation may serve as a marker of SD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of the present study was to determine whether lesion of the subthalamic nucleus (STN) promoted by N-methyl-D-aspartate (NMDA) would rescue nigrostriatal dopaminergic neurons after unilateral 6-hydroxydopamine (6-OHDA) injection into the medial forebrain bundle (MFB). Initially, 16 mg 6-OHDA (6-OHDA group) or vehicle (artificial cerebrospinal fluid - aCSF; Sham group) was infused into the right MFB of adult male Wistar rats. Fifteen days after surgery, the 6-OHDA and SHAM groups were randomly subdivided and received ipsilateral injection of either 60 mM NMDA or aCSF in the right STN. Additionally, a control group was not submitted to stereotaxic surgery. Five groups of rats were studied: 6-OHDA/NMDA, 6-OHDA/Sham, Sham/NMDA, Sham/Sham, and Control. Fourteen days after injection of 6-OHDA, rats were submitted to the rotational test induced by apomorphine (0.1 mg/kg, ip) and to the open-field test. The same tests were performed again 14 days after NMDA-induced lesion of the STN. The STN lesion reduced the contralateral turns induced by apomorphine and blocked the progression of motor impairment in the open-field test in 6-OHDA-treated rats. However, lesion of the STN did not prevent the reduction of striatal concentrations of dopamine and metabolites or the number of nigrostriatal dopaminergic neurons after 6-OHDA lesion. Therefore, STN lesion is able to reverse motor deficits after severe 6-OHDA-induced lesion of the nigrostriatal pathway, but does not protect or rescue dopaminergic neurons in the substantia nigra pars compacta.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The medial hypothalamus is part of a neurobiological substrate controlling defensive behavior. It has been shown that a hypothalamic nucleus, the dorsomedial hypothalamus (DMH), is involved in the regulation of escape, a defensive behavior related to panic attacks. The role played by the DMH in the organization of conditioned fear responses, however, is less clear. In the present study, we investigated the effects of reversible inactivation of the DMH with the GABA A agonist muscimol on inhibitory avoidance acquisition and escape expression by male Wistar rats (approximately 280 g in weight) tested in the elevated T-maze (ETM). In the ETM, inhibitory avoidance, a conditioned defensive response, has been associated with generalized anxiety disorder. Results showed that intra-DMH administration of the GABA A receptor agonist muscimol inhibited escape performance, suggesting an antipanic-like effect (P < 0.05), without changing inhibitory avoidance acquisition. Although a higher dose of muscimol (1.0 nmol/0.2 µL; N = 7) also altered locomotor activity in an open field when compared to control animals (0.2 µL saline; N = 13) (P < 0.05), the lower dose (0.5 nmol/0.2 µL; N = 12) of muscimol did not cause any motor impairment. These data corroborate previous evidence suggesting that the DMH is specifically involved in the modulation of escape. Dysfunction of this regulatory mechanism may be relevant in the genesis/maintenance of panic disorder.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dorsal raphe nucleus (DRN) is the origin of ascending serotonergic projections and is considered to be an important component of the brain circuit that mediates anxiety- and depression-related behaviors. A large fraction of DRN serotonin-positive neurons contain nitric oxide (NO). Disruption of NO-mediated neurotransmission in the DRN by NO synthase inhibitors produces anxiolytic- and antidepressant-like effects in rats and also induces nonspecific interference with locomotor activity. We investigated the involvement of the 5-HT1A autoreceptor in the locomotor effects induced by NO in the DRN of male Wistar rats (280-310 g, N = 9-10 per group). The NO donor 3-morpholinosylnomine hydrochloride (SIN-1, 150, and 300 nmol) and the NO scavenger S-3-carboxy-4-hydroxyphenylglycine (carboxy-PTIO, 0.1-3.0 nmol) were injected into the DRN of rats immediately before they were exposed to the open field for 10 min. To evaluate the involvement of the 5-HT1A receptor and the N-methyl-D-aspartate (NMDA) glutamate receptor in the locomotor effects of NO, animals were pretreated with the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, 8 nmol), the 5-HT1A receptor antagonist N-(2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl)-N-2-pyridinyl-cyclohexanecarboxamide maleate (WAY-100635, 0.37 nmol), and the NMDA receptor antagonist DL-2-amino-7-phosphonoheptanoic acid (AP7, 1 nmol), followed by microinjection of SIN-1 into the DRN. SIN-1 increased the distance traveled (mean ± SEM) in the open-field test (4431 ± 306.1 cm; F7,63 = 2.44, P = 0.028) and this effect was blocked by previous 8-OH-DPAT (2885 ± 490.4 cm) or AP7 (3335 ± 283.5 cm) administration (P < 0.05, Duncan test). These results indicate that 5-HT1A receptor activation and/or facilitation of glutamate neurotransmission can modulate the locomotor effects induced by NO in the DRN.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Anxiolytic and anxiogenic-like behavioral outcomes have been reported for methylenedioxymethamphetamine (MDMA or ecstasy) in rodents. In the present experiment, we attempted to identify behavioral, hormonal and neurochemical outcomes of MDMA treatment to clarify its effects on anxiety-related responses in 2-month-old Balb/c male mice (25-35 g; N = 7-10 mice/group). The behavioral tests used were open field, elevated plus maze, hole board, and defensive behavior against predator odor. Moreover, we also determined striatal dopamine and dopamine turnover, and serum corticosterone levels. MDMA was injected ip at 0.2, 1.0, 5.0, 8.0, 10, or 20 mg/kg. MDMA at 10 mg/kg induced the following significant (P < 0.05) effects: a) a dose-dependent increase in the distance traveled and in the time spent moving in the open field; b) decreased exploratory activity in the hole board as measured by number of head dips and time spent in head dipping; c) increased number of open arm entries and increased time spent in open arm exploration in the elevated plus maze; d) increased time spent away from an aversive stimulus and decreased number of risk assessments in an aversive odor chamber; e) increased serum corticosterone levels, and f) increased striatal dopamine level and turnover. Taken together, these data suggest an anxiogenic-like effect of acute MDMA treatment, despite the fact that behavioral anxiety expression was impaired in some of the behavioral tests used as a consequence of the motor stimulating effects of MDMA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is known that chronic high levels of corticosterone (CORT) enhance aversive responses such as avoidance and contextual freezing. In contrast, chronic CORT does not alter defensive behavior induced by the exposure to a predator odor. Since different defense-related responses have been associated with specific anxiety disorders found in clinical settings, the observation that chronic CORT alters some defensive behaviors but not others might be relevant to the understanding of the neurobiology of anxiety. In the present study, we investigated the effects of chronic CORT administration (through surgical implantation of a 21-day release 200 mg pellet) on avoidance acquisition and escape expression by male Wistar rats (200 g in weight at the beginning of the experiments, N = 6-10/group) tested in the elevated T-maze (ETM). These defensive behaviors have been associated with generalized anxiety and panic disorder, respectively. Since the tricyclic antidepressant imipramine is successfully used to treat both conditions, the effects of combined treatment with chronic imipramine (15 mg, ip) and CORT were also investigated. Results showed that chronic CORT facilitated avoidance performance, an anxiogenic-like effect (P < 0.05), without changing escape responses. Imipramine significantly reversed the anxiogenic effect of CORT (P < 0.05), although the drug did not exhibit anxiolytic effects by itself. Confirming previous observations, imipramine inhibited escape responses, a panicolytic-like effect. Unlike chronic CORT, imipramine also decreased locomotor activity in an open field. These data suggest that chronic CORT specifically altered ETM avoidance, a fact that should be relevant to a better understanding of the physiopathology of generalized anxiety and panic disorder.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lippia alba (Mill.) N.E. Brown (Verbenaceae) is widely used in different regions of Central and South America as a tranquilizer. The plant’s anxiolytic properties, however, merit investigation. The present study evaluated the effects of repeated daily (14 days) intraperitoneal (ip) treatment with an essential oil (EO) from a chemotype of L. alba (LA, chemotype II, 12.5 and 25 mg/kg; N = 6-8) and (R)-(-)-carvone (25 mg/kg; N = 8-12), the main constituent of this chemotype, on male Wistar rats (weighing 250 g at the beginning of the experiments) submitted to the elevated T-maze (ETM). The ETM allows the measurement of two defensive responses: inhibitory avoidance and one-way escape. In terms of psychopathology, these responses have been related to generalized anxiety and panic disorder, respectively. Treatment with the EO impaired ETM avoidance latencies, without altering escape, in a way similar to the reference drug diazepam (P < 0.05) (avoidance 2: control = 84.6 ± 35.2; EO 12.5 mg/kg = 11.8 ± 3.8; EO 25 mg/kg = 14.6 ± 2.7; diazepam = 7 ± 2.1). (R)-(-)-carvone also significantly altered this same response (P < 0.05; avoidance 1: control = 91.9 ± 31.5; carvone = 11.6 ± 1.8; diazepam = 8.1 ± 3.3). These results were not due to motor changes since no significant effects were detected in an open field. These observations suggest that LA exerts anxiolytic-like effects on a specific subset of defensive behaviors that have been implicated in generalized anxiety disorder, and suggest that carvone is one of the constituents of LA responsible for its action as a tranquilizer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The escape response to electrical or chemical stimulation of the dorsal periaqueductal gray matter (DPAG) has been associated with panic attacks. In order to explore the validity of the DPAG stimulation model for the study of panic disorder, we determined if the aversive consequences of the electrical or chemical stimulation of this midbrain area can be detected subsequently in the elevated T-maze. This animal model, derived from the elevated plus-maze, permits the measurement in the same rat of a generalized anxiety- and a panic-related defensive response, i.e., inhibitory avoidance and escape, respectively. Facilitation of inhibitory avoidance, suggesting an anxiogenic effect, was detected in male Wistar rats (200-220 g) tested in the elevated T-maze 30 min after DPAG electrical stimulation (current generated by a sine-wave stimulator, frequency at 60 Hz) or after local microinjection of the GABA A receptor antagonist bicuculline (5 pmol). Previous electrical (5, 15, 30 min, or 24 h before testing) or chemical stimulation of this midbrain area did not affect escape performance in the elevated T-maze or locomotion in an open-field. No change in the two behavioral tasks measured by the elevated T-maze was observed after repetitive (3 trials) electrical stimulation of the DPAG. The results indicate that activation of the DPAG caused a short-lived, but selective, increase in defensive behaviors associated with generalized anxiety.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Spinal cord injury is an extremely severe condition with no available effective therapies. We examined the effect of melatonin on traumatic compression of the spinal cord. Sixty male adult Wistar rats were divided into three groups: sham-operated animals and animals with 35 and 50% spinal cord compression with a polycarbonate rod spacer. Each group was divided into two subgroups, each receiving an injection of vehicle or melatonin (2.5 mg/kg, intraperitoneal) 5 min prior to and 1, 2, 3, and 4 h after injury. Functional recovery was monitored weekly by the open-field test, the Basso, Beattie and Bresnahan locomotor scale and the inclined plane test. Histological changes of the spinal cord were examined 35 days after injury. Motor scores were progressively lower as spacer size increased according to the motor scale and inclined plane test evaluation at all times of assessment. The results of the two tests were correlated. The open-field test presented similar results with a less pronounced difference between the 35 and 50% compression groups. The injured groups presented functional recovery that was more evident in the first and second weeks. Animals receiving melatonin treatment presented more pronounced functional recovery than vehicle-treated animals as measured by the motor scale or inclined plane. NADPH-d histochemistry revealed integrity of the spinal cord thoracic segment in sham-operated animals and confirmed the severity of the lesion after spinal cord narrowing. The results obtained after experimental compression of the spinal cord support the hypothesis that melatonin may be considered for use in clinical practice because of its protective effect on the secondary wave of neuronal death following the primary wave after spinal cord injury.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

People who suffer from traumatic brain injury (TBI) often experience cognitive deficits in spatial reference and working memory. The possible roles of cyclooxygenase-1 (COX-1) in learning and memory impairment in mice with TBI are far from well known. Adult mice subjected to TBI were treated with the COX-1 selective inhibitor SC560. Performance in the open field and on the beam walk was then used to assess motor and behavioral function 1, 3, 7, 14, and 21 days following injury. Acquisition of spatial learning and memory retention was assessed using the Morris water maze on day 15 post-TBI. The expressions of COX-1, prostaglandin E2 (PGE2), interleukin (IL)-6, brain-derived neurotrophic factor (BDNF), platelet-derived growth factor BB (PDGF-BB), synapsin-I, and synaptophysin were detected in TBI mice. Administration of SC560 improved performance of beam walk tasks as well as spatial learning and memory after TBI. SC560 also reduced expressions of inflammatory markers IL-6 and PGE2, and reversed the expressions of COX-1, BDNF, PDGF-BB, synapsin-I, and synaptophysin in TBI mice. The present findings demonstrated that COX-1 might play an important role in cognitive deficits after TBI and that selective COX-1 inhibition should be further investigated as a potential therapeutic approach for TBI.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hoodia gordonii is a plant species used traditionally in southern Africa to suppress appetite. Recently, it has been associated with a significant increase in blood pressure and pulse rate in women, suggesting sympathomimetic activity. The present study investigated the possible antidepressant-like effects of acute and repeated (15 days) administration of H. gordonii extract (25 and 50 mg/kg, po) to mice exposed to a forced swimming test (FST). Neurochemical analysis of brain monoamines was also carried out to determine the involvement of the monoaminergic system on these effects. Acute administration of H. gordonii decreased the immobility of mice in the FST without accompanying changes in general activity in the open-field test during acute treatment, suggesting an antidepressant-like effect. The anti-immobility effect of H. gordonii was prevented by pretreatment of mice with PCPA [an inhibitor of serotonin (5-HT) synthesis], NAN-190 (a 5-HT1A antagonist), ritanserin (a 5-HT2A/2C antagonist), ondansetron (a 5-HT3A antagonist), prazosin (an α1-adrenoceptor antagonist), SCH23390 (a D1 receptor antagonist), yohimbine (an α2-adrenoceptor antagonist), and sulpiride (a D2 receptor antagonist). A significant increase in 5-HT levels in the striatum was detected after acute administration, while 5-HT, norepinephrine and dopamine were significantly elevated after chronic treatment. Results indicated that H. gordonii possesses antidepressant-like activity in the FST by altering the dopaminergic, serotonergic, and noradrenergic systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stroke is the third most common cause of death worldwide, and most stroke survivors present some functional impairment. We assessed the striatal oxidative balance and motor alterations resulting from stroke in a rat model to investigate the neuroprotective role of physical exercise. Forty male Wistar rats were assigned to 4 groups: a) control, b) ischemia, c) physical exercise, and d) physical exercise and ischemia. Physical exercise was conducted using a treadmill for 8 weeks. Ischemia-reperfusion surgery involved transient bilateral occlusion of the common carotid arteries for 30 min. Neuromotor performance (open-field and rotarod performance tests) and pain sensitivity were evaluated beginning at 24 h after the surgery. Rats were euthanized and the corpora striata was removed for assay of reactive oxygen species, lipoperoxidation activity, and antioxidant markers. Ischemia-reperfusion caused changes in motor activity. The ischemia-induced alterations observed in the open-field test were fully reversed, and those observed in the rotarod test were partially reversed, by physical exercise. Pain sensitivity was similar among all groups. Levels of reactive oxygen species and lipoperoxidation increased after ischemia; physical exercise decreased reactive oxygen species levels. None of the treatments altered the levels of antioxidant markers. In summary, ischemia-reperfusion resulted in motor impairment and altered striatal oxidative balance in this animal model, but those changes were moderated by physical exercise.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Manufacturing industry has been always facing challenge to improve the production efficiency, product quality, innovation ability and struggling to adopt cost-effective manufacturing system. In recent years cloud computing is emerging as one of the major enablers for the manufacturing industry. Combining the emerged cloud computing and other advanced manufacturing technologies such as Internet of Things, service-oriented architecture (SOA), networked manufacturing (NM) and manufacturing grid (MGrid), with existing manufacturing models and enterprise information technologies, a new paradigm called cloud manufacturing is proposed by the recent literature. This study presents concepts and ideas of cloud computing and cloud manufacturing. The concept, architecture, core enabling technologies, and typical characteristics of cloud manufacturing are discussed, as well as the difference and relationship between cloud computing and cloud manufacturing. The research is based on mixed qualitative and quantitative methods, and a case study. The case is a prototype of cloud manufacturing solution, which is software platform cooperated by ATR Soft Oy and SW Company China office. This study tries to understand the practical impacts and challenges that are derived from cloud manufacturing. The main conclusion of this study is that cloud manufacturing is an approach to achieve the transformation from traditional production-oriented manufacturing to next generation service-oriented manufacturing. Many manufacturing enterprises are already using a form of cloud computing in their existing network infrastructure to increase flexibility of its supply chain, reduce resources consumption, the study finds out the shift from cloud computing to cloud manufacturing is feasible. Meanwhile, the study points out the related theory, methodology and application of cloud manufacturing system are far from maturity, it is still an open field where many new technologies need to be studied.