891 resultados para One-Way Function (OWF)
Resumo:
Pós-graduação em Desenvolvimento Humano e Tecnologias - IBRC
Resumo:
Objectives: To conduct a controlled study contrasting titanium surface topography after procedures that simulated 10 years of brushing using toothpastes with or without fluoride. Methods: Commercially pure titanium (cp Ti) and Ti-6Al-4V disks (6 mm circle divide x 4 mm) were mirror-polished and treated according to 6 groups (n = 6) as a function of immersion (I) or brushing (B) using deionised water (W), fluoride-free toothpaste (T) and fluoride toothpaste (FT). Surface topography was evaluated at baseline (pretreatment) and post-treatment, using atomic force microscope in order to obtain three-dimensional images and mean roughness. Specimens submitted to immersion were submerged in the vehicles without brushing. For brushed specimens, procedures were conducted using a linear brushing machine with a soft-bristled toothbrush. Immersion and brushing were performed for 244 h. IFT and BFT samples were analysed under scanning electron microscope with Energy-Dispersive X-ray Spectroscopy (EDS). Pre and post-treatment values were compared using the paired Student T-test (alpha = .05). Intergroup comparisons were conducted using one-way ANOVA with Tukey post-test (alpha = .05). Results: cp Ti mean roughness (in nanometers) comparing pre and post-treatment were: IW, 2.29 +/- 0.55/2.33 +/- 0.17; IT, 2.24 +/- 0.46/2.02 +/- 0.38; IFT, 2.22 +/- 0.53/1.95 +/- 0.36; BW, 2.22 +/- 0.42/3.76 +/- 0.45; BT, 2.27 +/- 0.55/16.05 +/- 3.25; BFT, 2.27 +/- 0.51/22.39 +/- 5.07. Mean roughness (in nanometers) measured in Ti-6Al-4V disks (pre/post-treatment) were: IW, 1.79 +/- 0.25/2.01 +/- 0.25; IT, 1.61 +/- 0.13/1.74 +/- 0.19; IFT, 1.92 +/- 0.39/2.29 +/- 0.51; BW, 2.00 +/- 0.71/2.05 +/- 0.43; BT, 2.37 +/- 0.86/11.17 +/- 2.29; BFT, 1.83 +/- 0.50/15.73 +/- 1.78. No significant differences were seen after immersions (p > .05). Brushing increased the roughness of cp Ti and of Ti-6Al-4V (p < .01); cp Ti had topographic changes after BW, BT and BFT treatments whilst Ti-6Al-4V was significantly different only after BT and BTF. EDS has not detected fluoride or sodium ions on metal surfaces. Conclusions: Exposure to toothpastes (immersion) does not affect titanium per se; their use during brushing affects titanium topography and roughness. The associated effects of toothpaste abrasives and fluorides seem to increase roughness on titanium brushed surfaces. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Background: A current challenge in gene annotation is to define the gene function in the context of the network of relationships instead of using single genes. The inference of gene networks (GNs) has emerged as an approach to better understand the biology of the system and to study how several components of this network interact with each other and keep their functions stable. However, in general there is no sufficient data to accurately recover the GNs from their expression levels leading to the curse of dimensionality, in which the number of variables is higher than samples. One way to mitigate this problem is to integrate biological data instead of using only the expression profiles in the inference process. Nowadays, the use of several biological information in inference methods had a significant increase in order to better recover the connections between genes and reduce the false positives. What makes this strategy so interesting is the possibility of confirming the known connections through the included biological data, and the possibility of discovering new relationships between genes when observed the expression data. Although several works in data integration have increased the performance of the network inference methods, the real contribution of adding each type of biological information in the obtained improvement is not clear. Methods: We propose a methodology to include biological information into an inference algorithm in order to assess its prediction gain by using biological information and expression profile together. We also evaluated and compared the gain of adding four types of biological information: (a) protein-protein interaction, (b) Rosetta stone fusion proteins, (c) KEGG and (d) KEGG+GO. Results and conclusions: This work presents a first comparison of the gain in the use of prior biological information in the inference of GNs by considering the eukaryote (P. falciparum) organism. Our results indicates that information based on direct interaction can produce a higher improvement in the gain than data about a less specific relationship as GO or KEGG. Also, as expected, the results show that the use of biological information is a very important approach for the improvement of the inference. We also compared the gain in the inference of the global network and only the hubs. The results indicates that the use of biological information can improve the identification of the most connected proteins.
Resumo:
OBJECTIVE: High fructose consumption contributes to the incidence of metabolic syndrome and, consequently, to cardiovascular outcomes. We investigated whether exercise training prevents high fructose diet-induced metabolic and cardiac morphofunctional alterations. METHODS: Wistar rats receiving fructose overload (F) in drinking water (100 g/l) were concomitantly trained on a treadmill (FT) for 10 weeks or kept sedentary. These rats were compared with a control group (C). Obesity was evaluated by the Lee index, and glycemia and insulin tolerance tests constituted the metabolic evaluation. Blood pressure was measured directly (Windaq, 2 kHz), and echocardiography was performed to determine left ventricular morphology and function. Statistical significance was determined by one-way ANOVA, with significance set at p<0.05. RESULTS: Fructose overload induced a metabolic syndrome state, as confirmed by insulin resistance (F: 3.6 +/- 0.2 vs. C: 4.5 +/- 0.2 mg/dl/min), hypertension (mean blood pressure, F: 118 +/- 3 vs. C: 104 +/- 4 mmHg) and obesity (F: 0.31 +/- 0.001 vs. C: 0.29 +/- 0.001 g/mm). Interestingly, fructose overload rats also exhibited diastolic dysfunction. Exercise training performed during the period of high fructose intake eliminated all of these derangements. The improvements in metabolic parameters were correlated with the maintenance of diastolic function. CONCLUSION: The role of exercise training in the prevention of metabolic and hemodynamic parameter alterations is of great importance in decreasing the cardiac morbidity and mortality related to metabolic syndrome.
Resumo:
Background: There is a growing need to improve myocardial protection, which will lead to better performance of cardiac operations and reduce morbidity and mortality. Therefore, the objective of this study was to compare the efficacy of myocardial protection solution using both intracellular and extracellular crystalloid type regarding the performance of the electrical conduction system, left ventricular contractility and edema, after being subjected to ischemic arrest and reperfusion. Methods: Hearts isolated from male Wistar (n=32) rats were prepared using Langendorff method and randomly divided equally into four groups according the cardioprotective solutions used Krebs-Henseleit-Buffer (KHB), Bretschneider-HTK (HTK), St. Thomas-1 (STH-1) and Celsior (CEL). After stabilization with KHB at 37 degrees C, baseline values (control) were collected for heart rate (HR), left ventricle systolic pressure (LVSP), maximum first derivate of rise left ventricular pressure (+dP/dt), maximum first derivate of fall left ventricular pressure (-dP/dt) and coronary flow (CF). The hearts were then perfused at 10 degrees C for 5 min and kept for 2 h in static ischemia at 20 degrees C in each cardioprotective solution. Data evaluation was done using analysis of variance in completely randomized One-Way ANOVA and Tukey's test for multiple comparisons. The level of statistical significance chosen was P<0.05. Results: HR was restored with all the solutions used. The evaluation of left ventricular contractility (LVSP, +dP/dt and -dP/dt) showed that treatment with CEL solution was better compared to other solutions. When analyzing the CF, the HTK solution showed better protection against edema. Conclusion: Despite the cardioprotective crystalloid solutions studied are not fully able to suppress the deleterious effects of ischemia and reperfusion in the rat heart, the CEL solution had significantly higher results followed by HTK>KHB>STH-1.
Resumo:
Endothelins (ETs) are involved in several inflammatory events. The present study investigated the efficacy of bosentan, a dual ETA/ETB receptor antagonist, in collagen-induced arthritis (CIA) in mice. CIA was induced in DBA/1J mice. Arthritic mice were treated with bosentan (100 mg/kg) once a day, starting from the day when arthritis was clinically detectable. CIA progression was assessed by measurements of visual clinical score, paw swelling and hypernociception. Histological changes, neutrophil infiltration and pro-inflammatory cytokines were evaluated in the joints. Gene expression in the lymph nodes of arthritic mice was evaluated by microarray technology. PreproET-1 mRNA expression in the lymph nodes of mice and in peripheral blood mononuclear cells (PBMCs) was evaluated by real-time PCR. The differences were evaluated by one-way ANOVA or Student's t test. Oral treatment with bosentan markedly ameliorated the clinical aspects of CIA (visual clinical score, paw swelling and hyperalgesia). Bosentan treatment also reduced joint damage, leukocyte infiltration and pro-inflammatory cytokine levels (IL-1 beta, TNF alpha and IL-17) in the joint tissues. Changes in gene expression in the lymph nodes of arthritic mice returned to the levels of the control mice after bosentan treatment. PreproET mRNA expression increased in PBMCs from rheumatoid arthritis (RA) patients but returned to basal level in PBMCs from patients under anti-TNF therapy. In-vitro treatment of PBMCs with TNF alpha upregulated ET system genes. These findings indicate that ET receptor antagonists, such as bosentan, might be useful in controlling RA. Moreover, it seems that ET mediation of arthritis is triggered by TNF alpha.
Resumo:
The influences of age in calves' immune system are described in their first phase of life. We hypothesized that variations that occur in the main mechanisms of lung innate response can help to identify periods of greater susceptibility to the respiratory diseases that affect calves in the first stage of their life. This study aimed to evaluate the innate immune system. Nine healthy calves were monitored for 3 mo and 8 immunologic evaluations were performed. Bronchoalveolar lavage samples were recovered by bronchoscopy. The alveolar macrophages in samples were identified by protein expression of cluster of differentiation 14 (CD14) and underwent functional evaluation of phagocytosis (Staphylococcus aureus stained with propidium iodide and Escherichia coli). Data was assessed by one-way ANOVA (unstacked and parametric) and the Mann-Whitney test (nonparametric). Functional alterations in CD14-positive phagocytes were observed, with punctual higher intensity of phagocytosis in the third week and its decrease starting at 45 d of life. A gradual increase in phagocytosis rate was observed starting at this date. It is concluded that from 45 d of life on, alveolar macrophages have less phagocytic capacity but more cells perform this function. We suggest that this occurs because lung macrophages of calves start to maintain their immune response without passive immunity influence. Until 90 d of life, calves did not achieve the stability to conclude the maturation of local innate immune response.
Resumo:
Abstract Background In spite of a large amount of studies in anesthetized animals, isolated hearts, and in vitro cardiomyocytes, to our knowledge, myocardial function was never studied in conscious diabetic rats. Myocardial performance and the response to stress caused by dobutamine were examined in conscious rats, fifteen days after the onset of diabetes caused by streptozotocin (STZ). The protective effect of insulin was also investigated in STZ-diabetic rats. Methods Cardiac contractility and relaxation were evaluated by means of maximum positive (+dP/dtmax) and negative (-dP/dtmax) values of first derivative of left ventricular pressure over time. In addition, it was examined the myocardial response to stress caused by two dosages (1 and 15 μg/kg) of dobutamine. One-way analysis of variance (ANOVA) was used to compare differences among groups, and two-way ANOVA for repeated measure, followed by Tukey post hoc test, to compare the responses to dobutamine. Differences were considered significant if P < 0.05. Results Basal mean arterial pressure, heart rate, +dP/dtmax and -dP/dtmax were found decreased in STZ-diabetic rats, but unaltered in control rats treated with vehicle and STZ-diabetic rats treated with insulin. Therefore, insulin prevented the hemodynamic and myocardial function alterations observed in STZ-diabetic rats. Lower dosage of dobutamine increased heart rate, +dP/dtmax and -dP/dtmax only in STZ-diabetic rats, while the higher dosage promoted greater, but similar, responses in the three groups. In conclusion, the results indicate that myocardial function was remarkably attenuated in conscious STZ-diabetic rats. In addition, the lower dosage of dobutamine uncovered a greater responsiveness of the myocardium of STZ-diabetic rats. Insulin preserved myocardial function and the integrity of the response to dobutamine of STZ-diabetic rats. Conclusion The present study provides new data from conscious rats showing that the cardiomyopathy of this pathophysiological condition was expressed by low indices of contractility and relaxation. In addition, it was also demonstrated that these pathophysiological features were prevented by the treatment with insulin.
Resumo:
The biosphere emits copiously volatile organic compounds (VOCs) into the atmosphere, which are removed again depending on the oxidative capacity of the atmosphere and physical processes such as mixing, transport and deposition. Biogenic VOCs react with the primary oxidant of the atmosphere, the hydroxyl radical (OH), and potentially lead to the formation tropospheric ozone and aerosol, which impact regional climate and air quality. The rate of OH decay in the atmosphere, the total OH reactivity is a function of the atmospheric, reactive compound's concentration and reaction velocity with OH. One way to measure the total OH reactivity, the total OH sink, is with the Comparative Reactivity Method - CRM. Basically, the reaction of OH with a reagent (here pyrrole) in clean air and in the presence of atmospheric, reactive molecules is compared. This thesis presents measurements of the total OH reactivity at the biosphere-atmosphere interface to analyze various influences and driving forces. For measurements in natural environment the instrument was automated and a direct, undisturbed sampling method developed. Additionally, an alternative detection system was tested and compared to the originally used detector (Proton Transfer Reaction-Mass Spectrometer, PTR-MS). The GC-PID (Gas Chromatographic Photo-Ionization Detector) was found as a smaller, less expensive, and robust alternative for total OH reactivity measurements. The HUMPPA-COPEC 2010 measurement campaign in the Finish forest was impacted by normal boreal forest emissions as well as prolonged heat and biomass burning emissions. The measurement of total OH reactivity was compared with a comprehensive set of monitored individual species ambient concentration levels. A significant discrepancy between those individually measured OH sinks and the total OH reactivity was observed, which was characterized in detail by the comparison of within and above the forest canopy detected OH reactivity. Direct impact of biogenic emissions on total OH reactivity was examined on Kleiner Feldberg, Germany, 2011. Trans-seasonal measurements of an enclosed Norway spruce branch were conducted via PTR-MS, for individual compound's emission rates, and CRM, for total OH reactivity emission fluxes. Especially during summertime, the individually monitored OH sink terms could not account for the measured total OH reactivity. A controlled oxidation experiment in a low NOx environment was conducted in the EUPHORE reaction chamber (CHEERS, Spain 2011). The concentration levels of the reactant isoprene and its major products were monitored and compared to total OH reactivity measurements as well as to the results of two models. The individually measured compounds could account for the total OH reactivity during this experiment as well as the traditional model-degradation scheme for isoprene (MCM 3.2). Due to previous observations of high OH levels in the isoprene-rich environment of the tropics, a novel isoprene mechanism was recently suggested. In this mechanism (MIME v4) additional OH is generated during isoprene oxidation, which could not be verified in the conditions of the CHEERS experiment.
Resumo:
Brain functions, such as learning, orchestrating locomotion, memory recall, and processing information, all require glucose as a source of energy. During these functions, the glucose concentration decreases as the glucose is being consumed by brain cells. By measuring this drop in concentration, it is possible to determine which parts of the brain are used during specific functions and consequently, how much energy the brain requires to complete the function. One way to measure in vivo brain glucose levels is with a microdialysis probe. The drawback of this analytical procedure, as with many steadystate fluid flow systems, is that the probe fluid will not reach equilibrium with the brain fluid. Therefore, brain concentration is inferred by taking samples at multiple inlet glucose concentrations and finding a point of convergence. The goal of this thesis is to create a three-dimensional, time-dependent, finite element representation of the brainprobe system in COMSOL 4.2 that describes the diffusion and convection of glucose. Once validated with experimental results, this model can then be used to test parameters that experiments cannot access. When simulations were run using published values for physical constants (i.e. diffusivities, density and viscosity), the resulting glucose model concentrations were within the error of the experimental data. This verifies that the model is an accurate representation of the physical system. In addition to accurately describing the experimental brain-probe system, the model I created is able to show the validity of zero-net-flux for a given experiment. A useful discovery is that the slope of the zero-net-flux line is dependent on perfusate flow rate and diffusion coefficients, but it is independent of brain glucose concentrations. The model was simplified with the realization that the perfusate is at thermal equilibrium with the brain throughout the active region of the probe. This allowed for the assumption that all model parameters are temperature independent. The time to steady-state for the probe is approximately one minute. However, the signal degrades in the exit tubing due to Taylor dispersion, on the order of two minutes for two meters of tubing. Given an analytical instrument requiring a five μL aliquot, the smallest brain process measurable for this system is 13 minutes.
Resumo:
The article discusses the function of an accompanying discourse in relation to the genesis of human practical action. On the one side, theory cannot be taken as the ground for practical action; practical action is not a realisation of intentions. On the other hand, human practical action is accompanied by series of explanations, justifications, declarations of intent, pre‑ and post-rationalisations, motivations etc. These accompanying discourses seem in one way or the other to be necessary for the actual realisation of human practical action. Following Pierre Bourdieu, it is suggested that an accompanying discourse cannot in a meaningful manner be separated from the human practical action, that practical theory should be regarded not as theory but as part of practice, and that practical theory first of all provides a common language for talking about practice and hence for reproducing a fundamentally arbitrary idea of the genesis of human practical action. Parallels are drawn to the education/formal training of semi-professionals.
Resumo:
The development of the brain and its underlying circuitry is dependent on the formation of trillions of chemical synapses, which are highly specialized contacts that regulate the flow of information from one neuron to the next. It is through these synaptic connections that neurons wire together into networks capable of performing specific tasks, and activity-dependent changes in their structural and physiological state is one way that the brain is thought to adapt and store information. At the ultrastructural level, developmental and activity-dependent changes in the size and shape of dendritic spines have been well documented, and it is widely believed that structural changes in spines are a hallmark sign of synapse maturation and alteration of synaptic physiology. While changes in spine structure have been studied extensively, changes in one of its most prominent components, the postsynaptic density (PSD), have largely evaded observation. The PSD is a protein-rich organelle on the cytoplasmic side of the postsynaptic membrane, where it sits in direct opposition to the presynaptic terminal. The PSD functions both to cluster neurotransmitter receptors at the cell surface as well as organize the intracellular signaling molecules responsible for transducing extracellular signals to the postsynaptic cell. Much is known about the chemical composition of the PSD, but the structural arrangement of its molecular components is not well documented. Adding to the difficulty of understanding such a complex mass of protein machinery is the fact that its protein composition is known to change in response to synaptic activity, meaning that its structure is plastic and no two PSDs are identical. Here, immuno-gold labeling and electron tomography of PSDs isolated throughout development was used to track changes in both the structure and molecular composition of the PSD. State-of-the-art cryo-electron tomography was used to study the fine structure of the PSD during development, and provides an unprecedented glimpse into its molecular architecture in an un-fixed, unstained and hydrated state. Through this analysis, large structural and compositional changes are apparent and suggest a model by which the PSD is first assembled as a mesh-like lattice of proteins that function as support for the later recruitment of various PSD components. Spatial analysis of the recruitment of proteins into the PSD demonstrated that its assembly has an underlying order.
Resumo:
The cytochromes P450 (P450) comprise a superfamily of hemoproteins that function in concert with NADPH-cytochrome P450 reductase (P450-reductase) to metabolize both endogenous and exogenous compounds. Many pharmacological agents undergo phase I metabolism by this P450 and P450-reductase monooxygenase system. Phase I metabolism ensures that these highly hydrophobic xenobiotics are made more hydrophilic, and hence easier to extrude from the body. While the majority of phase I metabolism occurs in the liver, metabolism in extrahepatic organ-systems like the intestine, kidney, and brain can have important roles in drug metabolism and/or efficacy. ^ While P450-mediated phase I metabolism has been well studied, investigators have only recently begun to elucidate what physiological roles P450 may have. One way to approach this question is to study P450s that are highly or specifically expressed in extrahepatic tissues. In this project I have studied the role of a recently cloned P450 family member, P450 2D18, that was previously shown to be expressed in the rat brain and kidney, but not in the liver. To this end, I have used the baculovirus expression system to over-express recombinant P450 2D18 and purified the functional enzyme using nickel and hydroxylapatite chromatography. SDS-PAGE analysis indicated that the enzyme was purified to electrophoretic homogeneity and Western analysis showed cross-reactivity with rabbit anti-human P450 2D6. Carbon monoxide difference spectra indicated that the purified protein contained no denatured P450 enzyme; this allowed for further characterization of the substrates and metabolites formed by P450 2D18-mediated metabolism. ^ Because P450 2D18 is expressed in brain, we characterized the activity toward several psychoactive drugs including the antidepressants imipramine and desipramine, and the anti-psychotic drugs chlorpromazine and haloperidol. P450 2D18 preferentially catalyzed the N-demethylation of imipramine, desipramine, and chlorpromazine. This is interesting given the fact that other P450 isoforms form multiple metabolites from such compounds. This limited metabolic profile might suggest that P450 2D18 has some unique function, or perhaps a role in endobiotic metabolism. ^ Further analysis of possible endogenous substrates for P450 2D18 led to the identification of dopamine and arachidonic acid as substrates. It was shown that P450 2D18 catalyzes the oxidation of dopamine to aminochrome, and that the enzyme binds dopamine with an apparent KS value of 678 μM, a value well within reported dopamine concentration in brain dopaminergic systems. Further, it was shown that P450 2D18 binds arachidonic acid with an apparent KS value of 148 μM, and catalyzes both the ω-hydroxylation and epoxygenation of arachidonic acid to metabolites that have been shown to have vasoactive properties in brain, kidney, and heart tissues. These data provide clues for endogenous roles of P450 within the brain, and possible involvement in the pathogenesis of Parkinson's disease. ^
Resumo:
The rates of childhood and adolescent obesity in the United States have been increasing steadily. American youth continue to eat more (increase energy intake) and reduce physical activity (decrease energy expenditure) resulting in increased body weight and body fatness. One way to help reduce body weight in children is to increase physical activity. The purpose of this study was to determine if an age appropriate before-school physical activity intervention would be successful in increasing energy expenditure, intensity of activity, and behavioral approaches in overweight girls. The subjects were recruited from Parker Memorial School in Tolland, Connecticut, and two testing periods occurred over an eight week period. Video recordings of each physical activity session were analyzed to determine energy expenditure, exercise intensity, and behaviors during exercise. Data was evaluated for normal distribution, and paired t-tests were used to determine statistical significance. This study showed that the age appropriate before school physical activity intervention was able to increase energy expenditure and exercise intensity and have a positive effect on behavioral approaches in overweight girls.
Resumo:
A problem frequently encountered in Data Envelopment Analysis (DEA) is that the total number of inputs and outputs included tend to be too many relative to the sample size. One way to counter this problem is to combine several inputs (or outputs) into (meaningful) aggregate variables reducing thereby the dimension of the input (or output) vector. A direct effect of input aggregation is to reduce the number of constraints. This, in its turn, alters the optimal value of the objective function. In this paper, we show how a statistical test proposed by Banker (1993) may be applied to test the validity of a specific way of aggregating several inputs. An empirical application using data from Indian manufacturing for the year 2002-03 is included as an example of the proposed test.