936 resultados para Offshore whaling
Resumo:
The onshore-offshore deep seismic experiment was carried out for the first time and filled the blankness of the seismic surveys in the transition area between South China and northeastern South China Sea. The seismic data were analyzed and processed. The different seismic phases were identified and their travel time arrivals were modeled by ray-tracing to study the P-wave velocity crustal structure of this area. The crustal structure of this area is the continental crust. The crust thickness is gradually decreasing southward along the on-shore-offshore seismic line. The low-velocity layer (5.5 similar to 5.9 km (.) s(-1)) exists generally in the middle crust (about 10.0 similar to 18.0km)with about 2.5 similar to 4.0 km thickness, which is also thinning seaward. No obvious high-velocity layer appears in the lower crust. The Binhai (littoral) fault zone is a low velocity zone, which is located about 35km southeast to the Nan'ao station and corresponding to the gradient belt of gravity & magnetism anomalies. The depth of the fault zone is close to the Moho discontinuity. The littoral fault zone is a boundary between the normal continental crust of South China and the thinned continental crust of the sea area.
Resumo:
Offshore active faults, especially those in the deep sea, are very difficult to study because of the water and sedimentary cover. To characterize the nature and geometry of offshore active faults, a combination of methods must be employed. Generally, seismic profiling is used to map these faults, but often only fault-related folds rather than fracture planes are imaged. Multi-beam swath bathymetry provides information on the structure and growth history of a fault because movements of an active fault are reflected in the bottom morphology. Submersible and deep-tow surveys allow direct observations of deformations on the seafloor (including fracture zones and microstructures). In the deep sea, linearly aligned cold seep communities provide indirect evidence for active faults and the spatial migration of their activities. The Western Sagami Bay fault (WSBF) in the western Sagami Bay off central Japan is an active fault that has been studied in detail using the above methods. The bottom morphology, fractured breccias directly observed and photographed, seismic profiles, as well as distribution and migration of cold seep communities provide evidence for the nature and geometry of the fault. Focal mechanism solutions of selected earthquakes in the western Sagami Bay during the period from 1900 to 1995 show that the maximum compression trends NW-SE and the minimum stress axis strikes NE-SW, a stress pattern indicating a left-lateral strike-slip fault.
Resumo:
Analyses of rare earth and trace element concentrations of native sulfur samples from the Kueishantao hydrothermal field were performed at the Seafloor Hydrothermal Activity Laboratory of the Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences. Using an Elan DRC II ICP-MS, and combining the sulfur isotopic compositions of native sulfur samples, we studied the sources and formation of a native sulfur chimney. The results show, when comparing them with native sulfur from crater lakes and other volcanic areas, that the native sulfur content of this chimney is very high (99.96%), the rare earth element (REE) and trace element constituents of the chimney are very low (Sigma REE < 21x10(-9)), and the chondrite-normalized REE patterns of the native sulfur samples are similar to those of the Kueishantao andesite, implying that the interaction of subseafloor fluid-andesite at the Kueishantao hydrothermal field was of short duration. The sulfur isotopic compositions of the native sulfur samples reveal that the sulfur of the chimney, from H2S and SO2, originated by magmatic degassing and that the REEs and trace elements are mostly from the Kueishantao andesite and partly from seawater. Combining these results with an analysis of the thermodynamics, it is clear that from the relatively low temperature (< 116 degrees C), the oxygenated and acidic environment is favorable for formation of this native sulfur chimney in the Kueishantao hydrothermal field.
Resumo:
Based on the Estuarine, Coastal and Ocean Modeling System with Sediments (ECOMSED) model, a 3-D hydrodynamic-transport numerical model was established for the offshore area near the Yangtze Estuary in the East China Sea. The hydrodynamic module was driven by tide and wind. Sediment module included sediment resuspension, transport and deposition of cohesive and non-cohesive sediment. The settling of cohesive sediment in the water column was modeled as a function of aggregation (flocculation) and deposition. The numerical results were compared with observation data for August, 2006. It shows that the sediment concentration reduces gradually from the seashore to the offshore area. Numerical results of concentration time series in the observation stations show two peaks and two valleys, according with the observation data. It is mainly affected by tidal current. The suspended sediment concentration is related to the tidal current during a tidal cycle, and the maximum concentration appears 1 h-4 h after the current maximum velocity has reached.
Resumo:
Copepod communities in onshore and offshore waters show a gradient from primarily near shore to primarily oceanic species. Understanding the transition between these communities is fundamental to determining the range of coastal influence. Copepod communities in the northern South China Sea (nSCS) were studied based on samples collected by vertically towing a net in 10 February-6 March (winter) and 26 August-6 September (summer) of 2004. Calanoida species richness, total copepod abundance, Shannon-Weaver diversity index, and onshore-offshore occurrence of dominant species showed obvious change from onshore to offshore waters. Although the offshore stations had lower abundance than the shelf stations, they had more species and larger diversity index. Abundance of some species (groups) with dominance index > 5% (Calanus sinicus, Euchaeta spp., Temora spp., Paracalanus parvus, and Subeucalanus subtenuis) declined from onshore to offshore waters. Warm water species (Pleuromamma abdominalis, P. gracilis, and P. robusta) occurred in offshore waters in both cruises. Station (q-type) cluster analysis in winter and summer separated copepod community into onshore and offshore communities at similar to 40% level of similarity. The two communities were divided at the position of similar to 100-m isobath. In summer, C. sinicus occurred in the upwelling area east of Hainan Island, indicating the presence of an oversummering stock of this species.
Resumo:
The application of hot-dipped zinc and zinc-aluminum alloy coatings were introduced. Exposure tests of the steels with these coatings were conducted in the offshore atmosphere in Qingdao and Xiamen for 12 years separately. Effects of the coating thickness, alloy composition and atmospheric environment on the corrosion performance were studied. Results of the onsite exposure tests were compared with the results of a previous indoor salt spray accelerated corrosion tests. The study supports that zinc-aluminum alloy coatings are useful in providing better corrosion resistance and can be further developed for future applications.
Resumo:
Shallow-water tropical reefs and the deep sea represent the two most diverse marine environments. Understanding the origin and diversification of this biodiversity is a major quest in ecology and evolution. The most prominent and well-supported explanation, articulated since the first explorations of the deep sea, holds that benthic marine fauna originated in shallow, onshore environments, and diversified into deeper waters. In contrast, evidence that groups of marine organisms originated in the deep sea is limited, and the possibility that deep-water taxa have contributed to the formation of shallow-water communities remains untested with phylogenetic methods. Here we show that stylasterid corals (Cnidaria: Hydrozoa: Stylasteridae)--the second most diverse group of hard corals--originated and diversified extensively in the deep sea, and subsequently invaded shallow waters. Our phylogenetic results show that deep-water stylasterid corals have invaded the shallow-water tropics three times, with one additional invasion of the shallow-water temperate zone. Our results also show that anti-predatory innovations arose in the deep sea, but were not involved in the shallow-water invasions. These findings are the first robust evidence that an important group of tropical shallow-water marine animals evolved from deep-water ancestors.