878 resultados para Offshore oil well drilling.
Resumo:
"OCS EIS/EA MMS 2006-004."
Resumo:
Mode of access: Internet.
Resumo:
The purpose of this fact sheet is to provide a summary of literature research on the use of well "shooting" or blasting technology in Northern Illinois. Water well shooting or blasting is done to increase water yield from a sandstone aquifer for a particular water supply well ... The Lake County Health Department (LCHD) detected a chemical, vinyl chloride -- from a family of chemicals known as volatile organic compounds (VOCs) -- in some private wells in the unincorporated Hillcrest Subdivision near Wauconda, through routine well testing done in the fall of 2003. The LCHD presented these findings to the public at a January 13, 2004 meeting. The concern was raised at the public meeting that recent subsurface water well "shooting" or blasting techniques, performed in the deep sandstone aquifer (800 to 1,000 feet below ground surface), in the borehole of a community water supply (CWS) well in the area, might have impacted the shallow aquifer in such a way as to contribute to private well contamination under investigation in the Hillcrest Subdivision.
Resumo:
Mode of access: Internet.
Resumo:
"April 20, 2006."
Resumo:
Previous editions published under title: The fundamentals of electric log interpretation.
Resumo:
"OCS EIS/EA MMS 90-0035."
Resumo:
"DOE/EIA-0372/1-3."
Resumo:
"August 1996."
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
"MMS 91-0044."
Resumo:
During the course of 2005, the price of crude oil reached unprecedented high levels, at least in nominal terms. Australian motorists have become used to paying more than a dollar a litre for petrol. Given the past volatility in oil prices, often described in terms of a series of oil ‘shocks’ (the large price increases in 1973, 1979 and 1999), several questions arise. First, will current high prices persist, or will prices decline substantially as occurred after previous oil shocks? Second, is the current shortage of oil a temporary phenomenon, caused by inadequate investment in oil exploration, drilling and refining capacity, or is it a signal that the supply of oil available to the world has peaked? Third, will high oil prices lead to broader economic disruption, as is commonly supposed to have happened after previous shocks? Fourth, how painful will an adjustment to lower use of oil be? Finally, how does all this relate to our efforts to deal with the problem of climate change? This article is an effort to answer some of these questions in the light of the knowledge available to us.
Resumo:
Due to the great challenges encountered in drilling wells, there is a need to develop fluids with appropriated properties and able to meet all the requirements of drilling operations. The physicochemical and rheological properties must be carefully controlled so that a fluid can exercise all its functions. In perforations sensitive to contact with water and "offshore", it becomes necessary the use of oil based drilling fluids, but the bentonite clay cannot be used without a previous surface modification so that their surfaces become hydrophobic. Lately, the oil companies in Brazil use imported organoclays in the preparation of oil-based drilling fluids. The study aimed to modify a calcium clay to increase the affinity of the same organic phase of oil-based drilling fluids, applying three surfactants (OCS, CTAB and UTM 150) at different concentrations. The results indicated that the surfactants UTM 150 and CTAB showed better results compared to OCS. Considering the type of surfactant and concentration as variables used in the statistical analysis, the results indicated that only the surface tension and concentration of calcium oxide in response to organophilization process showed statistically significant effects. The organophilizated clay has potential for application in oil-based drilling fluids.
Resumo:
Primary cementing is one of the main operations in well drilling responsible for the mechanical stability and zonal isolation during the production of oil. However, the cement sheath is constantly under mechanical stresses and temperature variations caused by the recovery of heavy oil. In order to minimize fracture and wear of the cement sheath, new admixtures are developed to improve the properties of Portland cement slurries and avoid environmental contamination caused by leaking gas and oil. Polymers with the ability to form polymeric films are candidates to improve the properties of hardened cement slurries, especially their fracture energy. The present study aimed at evaluating the effect of the addition of a chitosan suspension on cement slurries in order to improve the properties of the cement and increase its performance on heavy oil recovery. Chitosan was dissolved in acetic ac id (0.25 M and 2 M) and added to the formulation of the slurries in different concentrations. SEM analyses confirmed the formation of polymeric films in the cementitious matrix. Strength tests showed higher fracture energy compared to slurries without the addition of chitosan. The formation of the polymeric films also reduced the permeability of the slurry. Therefore, chitosan suspensions can be potentially used as cementing admixtures for heavy oil well applications