997 resultados para Ocean sediment


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Calcifying foraminifera are expected to be endangered by ocean acidification; however, the response of a complete community kept in natural sediment and over multiple generations under controlled laboratory conditions has not been constrained to date. During 6 months of incubation, foraminiferal assemblages were kept and treated in natural sediment with pCO2-enriched seawater of 430, 907, 1865 and 3247 µatm pCO2. The fauna was dominated by Ammonia aomoriensis and Elphidium species, whereas agglutinated species were rare. After 6 months of incubation, pore water alkalinity was much higher in comparison to the overlying seawater. Consequently, the saturation state of Omega calc was much higher in the sediment than in the water column in nearly all pCO2 treatments and remained close to saturation. As a result, the life cycle (population density, growth and reproduction) of living assemblages varied markedly during the experimental period, but was largely unaffected by the pCO2 treatments applied. According to the size-frequency distribution, we conclude that foraminifera start reproduction at a diameter of 250 µm. Mortality of living Ammonia aomoriensis was unaffected, whereas size of large and dead tests decreased with elevated pCO2 from 285 µm (pCO2 from 430 to 1865 µatm) to 258 µm (pCO2 3247 µatm). The total organic content of living Ammonia aomoriensis has been determined to be 4.3% of CaCO3 weight. Living individuals had a calcium carbonate production rate of 0.47 g/m**2/a, whereas dead empty tests accumulated a rate of 0.27 g /m**2/a. Although Omega calc was close to 1, approximately 30% of the empty tests of Ammonia aomoriensis showed dissolution features at high pCO2 of 3247 µatm during the last 2 months of incubation. In contrast, tests of the subdominant species, Elphidium incertum, stayed intact. Our results emphasize that the sensitivity to ocean acidification of the endobenthic foraminifera Ammonia aomoriensis in their natural sediment habitat is much lower compared to the experimental response of specimens isolated from the sediment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The distribution of dissolved aluminium in the West Atlantic Ocean shows a mirror image with that of dissolved silicic acid, hinting at intricate interactions between the ocean cycling of Al and Si. The marine biogeochemistry of Al is of interest because of its potential impact on diatom opal remineralisation, hence Si availability. Furthermore, the dissolved Al concentration at the surface ocean has been used as a tracer for dust input, dust being the most important source of the bio-essential trace element iron to the ocean. Previously, the dissolved concentration of Al was simulated reasonably well with only a dust source, and scavenging by adsorption on settling biogenic debris as the only removal process. Here we explore the impacts of (i) a sediment source of Al in the Northern Hemisphere (especially north of ~ 40° N), (ii) the imposed velocity field, and (iii) biological incorporation of Al on the modelled Al distribution in the ocean. The sediment source clearly improves the model results, and using a different velocity field shows the importance of advection on the simulated Al distribution. Biological incorporation appears to be a potentially important removal process. However, conclusive independent data to constrain the Al / Si incorporation ratio by growing diatoms are missing. Therefore, this study does not provide a definitive answer to the question of the relative importance of Al removal by incorporation compared to removal by adsorptive scavenging.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Shell chemistry of planktic foraminifera and the alkenone unsaturation index in 69 surface sediment samples in the tropical eastern Indian Ocean off West and South Indonesia were studied. Results were compared to modern hydrographic data in order to assess how modern environmental conditions are preserved in sedimentary record, and to determine the best possible proxies to reconstruct seasonality, thermal gradient and upper water column characteristics in this part of the world ocean. Our results imply that alkenone-derived temperatures record annual mean temperatures in the study area. However, this finding might be an artifact due to the temperature limitation of this proxy above 28°C. Combined study of shell stable oxygen isotope and Mg/Ca ratio of planktic foraminifera suggests that Globigerinoides ruber sensu stricto (s.s.), G. ruber sensu lato (s.l.), and G. sacculifer calcify within the mixed-layer between 20 m and 50 m, whereas Globigerina bulloides records mixed-layer conditions at ~50 m depth during boreal summer. Mean calcifications of Pulleniatina obliquiloculata, Neogloboquadrina dutertrei, and Globorotalia tumida occur at the top of the thermocline during boreal summer, at ~75 m, 75-100 m, and 100 m, respectively. Shell Mg/Ca ratios of all species show a significant correlation with temperature at their apparent calcification depths and validate the application of previously published temperature calibrations, except for G. tumida that requires a regional Mg/Ca-temperature calibration (Mg/Ca = 0.41 exp (0.068*T)). We show that the difference in Mg/Ca-temperatures of the mixed-layer species and the thermocline species, particularly between G. ruber s.s. (or s.l.) and P. obliquiloculata, can be applied to track changes in the upper water column stratification. Our results provide critical tools for reconstructing past changes in the hydrography of the study area and their relation to monsoon, El Niño-Southern Oscillation, and the Indian Ocean Dipole Mode.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The response of the tropical climate in the Indian Ocean realm to abrupt climate change events in the North Atlantic Ocean is contentious. Repositioning of the intertropical convergence zone is thought to have been responsible for changes in tropical hydroclimate during North Atlantic cold spells1, 2, 3, 4, 5, but the dearth of high-resolution records outside the monsoon realm in the Indian Ocean precludes a full understanding of this remote relationship and its underlying mechanisms. Here we show that slowdowns of the Atlantic meridional overturning circulation during Heinrich stadials and the Younger Dryas stadial affected the tropical Indian Ocean hydroclimate through changes to the Hadley circulation including a southward shift in the rising branch (the intertropical convergence zone) and an overall weakening over the southern Indian Ocean. Our results are based on new, high-resolution sea surface temperature and seawater oxygen isotope records of well-dated sedimentary archives from the tropical eastern Indian Ocean for the past 45,000 years, combined with climate model simulations of Atlantic circulation slowdown under Marine Isotope Stages 2 and 3 boundary conditions. Similar conditions in the east and west of the basin rule out a zonal dipole structure as the dominant forcing of the tropical Indian Ocean hydroclimate of millennial-scale events. Results from our simulations and proxy data suggest dry conditions in the northern Indian Ocean realm and wet and warm conditions in the southern realm during North Atlantic cold spells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Inclination patterns of natural remanent magnetization (NRM) in Quaternary sediment cores from the Arctic Ocean have been widely used for stratigraphic correlation and the construction of age models, however, shallow and negative NRM inclinations in sediments deposited during the Brunhes Chron in the Arctic Ocean appear to have a partly diagenetic origin. Rock magnetic and mineralogical studies demonstrate the presence of titanomagnetite and titanomaghemite. Thermal demagnetization of the NRM indicates that shallow and negative inclination components are largely "unblocked" below ~300 °C, consistent with a titanomaghemite remanence carrier. Following earlier studies on the Mendeleev-Alpha Ridge, shallow and negative NRM inclination intervals in cores from the Lomonosov Ridge and Yermak Plateau are attributed to partial self-reversed chemical remanent magnetization (CRM) carried by titanomaghemite formed during seafloor oxidation of host (detrital) titanomagnetite grains. Distortion of paleomagnetic records due to seafloor maghemitization appears to be especially important in the perennially ice covered western (Mendeleev-Alpha Ridge) and central Arctic Ocean (Lomonosov Ridge) and, to a lesser extent, near the ice edge (Yermak Plateau). On the Yermak Plateau, magnetic grain size parameters mimic the global benthic oxygen isotope record back to at least marine isotope stage 6, implying that magnetic grain size is sensitive to glacial-interglacial changes in bottom-current velocity and/or detrital provenance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Shallow marine benthic communities around Antarctica show high levels of endemism, gigantism, slow growth, longevity and late maturity, as well as adaptive radiations that have generated considerable biodiversity in some taxa1. The deeper parts of the Southern Ocean exhibit some unique environmental features, including a very deep continental shelf2 and a weakly stratified water column, and are the source for much of the deep water in the world ocean. These features suggest that deep-sea faunas around the Antarctic may be related both to adjacent shelf communities and to those in other oceans. Unlike shallow-water Antarctic benthic communities, however, little is known about life in this vast deep-sea region2, 3. Here, we report new data from recent sampling expeditions in the deep Weddell Sea and adjacent areas (748-6,348 m water depth) that reveal high levels of new biodiversity; for example, 674 isopods species, of which 585 were new to science. Bathymetric and biogeographic trends varied between taxa. In groups such as the isopods and polychaetes, slope assemblages included species that have invaded from the shelf. In other taxa, the shelf and slope assemblages were more distinct. Abyssal faunas tended to have stronger links to other oceans, particularly the Atlantic, but mainly in taxa with good dispersal capabilities, such as the Foraminifera. The isopods, ostracods and nematodes, which are poor dispersers, include many species currently known only from the Southern Ocean. Our findings challenge suggestions that deep-sea diversity is depressed in the Southern Ocean and provide a basis for exploring the evolutionary significance of the varied biogeographic patterns observed in this remote environment.