994 resultados para ORGANIC-COMPOUND EMISSIONS
Resumo:
Methanol is ubiquitous in seawater and the most abundant oxygenated volatile organic compound (OVOC) in the atmosphere where it influences oxidising capacity and ozone formation. Marine methylotrophic bacteria utilise methanol in seawater both as an energy and/or growth substrate. This work represents the first fully resolved seasonal study of marine microbial methanol uptake dynamics. Rates of microbial methanol dissimilation in coastal surface waters of the UK varied between 0.7 – 11.2 nmol l-1 h-1 and reached a maximum in February. Rates of microbial methanol assimilation varied between 0.04 – 2.64 x 10-2 nmol l-1 h-1 and reached a maximum in August. Temporal variability in microbial methanol uptake rates shows that methanol assimilation and dissimilation display opposing seasonal cycles, although overall <1% of methanol was assimilated. Correlative approaches with 16S rRNA pyrosequencing data suggested that bacteria of the SAR11 clade and Rhodobacterales could be significantly influencing rates of methanol dissimilation and assimilation, respectively, at station L4 in the western English Channel
Resumo:
Methanol is ubiquitous in seawater and the most abundant oxygenated volatile organic compound (OVOC) in the atmosphere where it influences oxidising capacity and ozone formation. Marine methylotrophic bacteria utilise methanol in seawater both as an energy and/or growth substrate. This work represents the first fully resolved seasonal study of marine microbial methanol uptake dynamics. Rates of microbial methanol dissimilation in coastal surface waters of the UK varied between 0.7 – 11.2 nmol l-1 h-1 and reached a maximum in February. Rates of microbial methanol assimilation varied between 0.04 – 2.64 x 10-2 nmol l-1 h-1 and reached a maximum in August. Temporal variability in microbial methanol uptake rates shows that methanol assimilation and dissimilation display opposing seasonal cycles, although overall <1% of methanol was assimilated. Correlative approaches with 16S rRNA pyrosequencing data suggested that bacteria of the SAR11 clade and Rhodobacterales could be significantly influencing rates of methanol dissimilation and assimilation, respectively, at station L4 in the western English Channel
Resumo:
The objective was the development a methodology to label organic compounds with radioactive iodine (123I) from the reaction of organic compound with iodine nomochloride (ICL). The process begins with the production of 123ICl from the oxidation of potassium iodate in acid medium. The ICL labeled with 123I is extracted from aqueous phase using diethyl ether and then mixed with the organic compound to be labeled and the process is based on adding the radioactive iodine to the Carbon-Carbon double bonds of the organic compound. To measure the efficiency of the labeling process, in all stages samples were collected and the total activity of 123I was measure. The results show a production yield of 82% for lubricant oil and 85% for gasoline and diesel.
Resumo:
A produção mundial de nanomateriais tem aumentado nos últimos anos, em função de suas variadas aplicações tecnológicas e, como consequência do seu crescente uso e demanda, poderão existir riscos ambientais sendo a água o ambiente onde muitas destas substâncias podem exercer efeitos deletérios. Um dos nanomaterias de carbono mais utilizados é o fulereno, um composto orgânico lipofílico que pode se comportar como carreador de moléculas tóxicas, potencializando a entrada de contaminantes ambientais em órgãos específicos, fenômeno conhecido como “cavalo de Troia”. As microcistinas (MC) são cianotoxinas produzidas por cianobactérias durante episódios de floração, afetando aos organismos aquáticos e ao ser humano. Diversos estudos demonstram que organismos expostos tanto às MCs quanto ao fulereno podem causar produção excessiva de espécies ativas de oxigênio e alterar os níveis de antioxidantes. Além disso, outro fator que pode vir a intensificar o potencial tóxico de ambos é a incidência de radiação UVA. Sendo assim, procurou-se avaliar os efeitos em parâmetros de estresse oxidativo da co-exposição ex vivo da cianotoxina microcistina-LR (MC-LR) e o nanomaterial de carbono fulereno em brânquias do peixe Cyprinus carpio sob incidência de radiação UVA. Os resultados mostraram que: (a) houve uma perda da capacidade antioxidante no tratamento com MC-LR (baixa concentração) quando coexposta com fulereno no UVA em relação com o tratamento realizado sem co-exposição com fulereno; (b) o fulereno no UV diminuiu a atividade da enzima glutationa-Stransferase (GST) quando comparado com o controle no UV; (c) a MC-LR (alta concentração) co-exposta com fulereno foi capaz de diminuir as concentrações do antioxidante glutationa (GSH) quando comparado com o mesmo tratamento tanto no UVA quanto no escuro sem a co-exposição ao fulereno; (d) o tratamento MC-LR (baixa concentração) com UVA aumentou o dano oxidativo lipídico quando comparado com o controle UVA; (e) o fulereno não causou uma maior bioacumulação da microcistina no tecido. Sendo assim, pode-se concluir que o fulereno não apresentou o potencial de carregador de moléculas nessas concentrações de microcistina, porém, a co-exposição dos compostos diminuem tanto capacidade antioxidante total, como a concentração da GSH, podendo gerar problemas a longo prazo na detoxificação da toxina.
Resumo:
Odour impacts and concerns are an impediment to the growth of the Australian chicken meat industry. To manage these, the industry has to be able to demonstrate the efficacy of its odour reduction strategies scientifically and defensibly; however, it currently lacks reliable, cost effective and objective tools to do so. This report describes the development of an artificial olfaction system (AOS) to measure meat chicken farm odour. This report describes the market research undertaken to determine the demand for such a tool, the development and evaluation of three AOS prototypes, data analysis and odour prediction modelling, and the development of two complementary odour measurement tools, namely, a volatile organic compound (VOC) pre-concentrator and a field olfactometer. This report is aimed at investors in poultry odour research and those charged with, or interested in, assessment of odour on chicken farms, including farm managers, integrators, their consultants, regulators and researchers. The findings will influence the focus of future environmental odour measurement research.
Resumo:
How can we control the experimental conditions towards the isolation of specific structures? Why do particular architectures form? These are some challenging questions that synthetic chemists try to answer, specifically within polyoxometalate (POM) chemistry, where there is still much unknown regarding the synthesis of novel molecular structures in a controlled and predictive manner. This work covers a wide range of POM chemistry, exploring the redox self-assembly of polyoxometalate clusters, using both “one-pot”, flow and hydrothermal conditions. For this purpose, different vanadium, molybdenum and tungsten reagents, heteroatoms, inorganic salts and reducing agents have been used. The template effect of lone-pair containing pyramidal heteroatoms has been investigated. Efforts to synthesize new POM clusters displaying pyramidal heteroanions (XO32-, where X= S, Se, Te, P) are reported. The reaction of molybdenum with vanadium in the presence of XO32- heteroatoms is explored, showing how via the cation and experimental control it is possible to direct the self-assembly process and to isolate isostructural compounds. A series of four isostructural (two new, namely {Mo11V7P} and {Mo11V7Te} and two already known, namely {Mo11V7Se} and {Mo11V7S} disordered egg-shaped Polyoxometalates have been reported. The compounds were characterized by X-ray structural analysis, TGA, UV-Vis, FT-IR, Elemental and Flame Atomic Absorption Spectroscopy (FAAS) analysis and Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Cyclic Voltammetry measurements have been carried out in all four compounds showing the effect of the ionic density of the heteroatom on the potential. High-Resolution ESI-MS studies have revealed that the structures retain their integrity in solution. Efforts to synthesize new mixed-metal compounds led to isolation, structural, and electronic characterization of the theoretically predicted, but experimentally elusive δ-isomer of the Keggin polyoxometalate cluster anion, {H2W4V9O33(C6H13NO3)}, by the reaction of tungstate(VI) and vanadium(V) with triethanolammonium ions (TEAH), acting as a tripodal ligand grafted to the surface of the cluster. Control experiments (in the absence of the organic compound) have proven that the tripodal ligand plays crucial role on the formation of the isomer. The six vanadium metal centres, which consist the upper part of the cluster, are bonded to the “capping” TEA tripodal ligand. This metal-ligand bonding directs and stabilises the formation of the final product. The δ-Keggin species was characterized by single-crystal X-ray diffraction, FT-IR, UV-vis, NMR and ESI-MS spectrometry. Electronic structure and structure-stability correlations were evaluated by means of DFT calculations. The compounds exhibited photochromic properties by undergoing single-crystal-to-single-crystal (SC-SC) transformations and changing colour under light. Non-conventional synthetic approaches are also used for the synthesis of the POM clusters comparing the classical “one-pot” reaction conditions and exploring the synthetic parameters of the synthesis of POM compounds. Reactions under hydrothermal and flow conditions, where single crystals that depend on the solubility of the minerals under hot water and high pressure can be synthesized, resulted in the isolation of two isostructural compounds, namely, {Mo12V3Te5}. The compound isolated from a continuous processing method, crystallizes in a hexagonal crystal system, forming a 2D porous plane net, while the compound isolated using hard experimental conditions (high temperature and pressure) crystallizes in monoclinic system, resulting in a different packing configuration. Utilizing these alternative synthetic approaches, the most kinetically and thermodynamically compounds would possibly be isolated. These compounds were characterised by single-crystal X-ray diffraction, FT-IR and UV-vis spectroscopy. Finally, the redox-controlled driven oscillatory template exchange between phosphate (P) and vanadate (V) anions enclosed in an {M18O54(XO4)2} cluster is further investigated using UV-vis spectroscopy as a function of reaction time, showed that more than six complete oscillations interconverting the capsule species present in solution from {P2M18} to {V2M18} were possible, provided that a sufficient concentration of the TEA reducing agent was present in solution. In an effort to investigate the periodicity of the exchange of the phosphate and vanadate anions, time dependent Uv-vis measurements were performed for a period at a range of 170-550 hours. Different experimental conditions were also applied in order to investigate the role of the reducing agent, as well as the effect of other experimental variables on the oscillatory system.
Resumo:
A comparison of the Rietveld quantitative phase analyses (RQPA) obtained using Cu-Kα1, Mo-Kα1, and synchrotron strictly monochromatic radiations is presented. The main aim is to test a simple hypothesis: high energy Mo-radiation, combined with high resolution laboratory X-ray powder diffraction optics, could yield more accurate RQPA, for challenging samples, than well-established Cu-radiation procedure(s). In order to do so, three set of mixtures with increasing amounts of a given phase (spiking-method) were prepared and the corresponding RQPA results have been evaluated. Firstly, a series of crystalline inorganic phase mixtures with increasing amounts of an analyte was studied in order to determine if Mo-Kα1 methodology is as robust as the well-established Cu-Kα1 one. Secondly, a series of crystalline organic phase mixtures with increasing amounts of an organic compound was analyzed. This type of mixture can result in transparency problems in reflection and inhomogeneous loading in narrow capillaries for transmission studies. Finally, a third series with variable amorphous content was studied. Limit of detection in Cu-patterns, ~0.2 wt%, are slightly lower than those derived from Mo-patterns, ~0.3 wt%, for similar recording times and limit of quantification for a well crystallized inorganic phase using laboratory powder diffraction was established ~0.10 wt%. However, the accuracy was comprised as relative errors were ~100%. Contents higher than 1.0 wt% yielded analyses with relative errors lower than 20%. From the obtained results it is inferred that RQPA from Mo-Kα1 radiation have slightly better accuracies than those obtained from Cu-Kα1. This behavior has been established with the calibration graphics obtained through the spiking method and also from Kullback-Leibler distance statistic studies. We explain this outcome, in spite of the lower diffraction power for Mo-radiation (compared to Cu-radiation), due to the larger volume tested with Mo, also because higher energy minimize pattern systematic errors and the microabsorption effect.
The use of mo and cu monochromatic radiations for quantitative phase analysis: study of the accuracy
Resumo:
Cement hydration is a very complex process in which crystalline phases are dissolving in water and after supersaturation hydrated crystalline and amorphous phases precipitate. Great efforts are being made to develop analytical tools to accurately quantify these processes and X-ray Powder Diffraction (XRPD) combined with Rietveld methodology is a suitable tool to quantify these complex mixtures and their time evolutions. However, some problems/drawbacks should be overcome to fully apply it to cement pastes characterization in order to get accurate phase analyses. In order to tackle this issue, a comparison of the Rietveld quantitative phase analyses (RQPA) obtained using Cu-Kα1, Mo-Kα1, and synchrotron strictly monochromatic radiations of three set of mixtures with increasing amounts of a given phase (spiking-method) is presented. The main aim is to test a simple hypothesis: high energy Mo-radiation, combined with high resolution laboratory X-ray powder diffraction optics, could yield more accurate RQPA, for challenging samples, than well-established Cu-radiation procedure(s). Firstly, a series of crystalline inorganic phase mixtures with increasing amounts of an analyte was studied in order to determine if Mo-Kα1 methodology is as robust as the well-established Cu-Kα1 one. Secondly, a series of crystalline organic phase mixtures with increasing amounts of an organic compound was analyzed. This type of mixture can result in transparency problems in reflection and inhomogeneous loading in narrow capillaries for transmission studies. Finally, a third series with variable amorphous content was studied. Limit of detection in Cu-patterns, ~0.2 wt%, are slightly lower than those derived from Mo-patterns, ~0.3 wt%, for similar recording times and limit of quantification for a well crystallized inorganic phase using laboratory powder diffraction was established ~0.10 wt%. From the obtained results it is inferred that RQPA from Mo-Kα1 radiation have slightly better accuracies than those obtained from Cu-Kα1. The results obtained in the previous comparison have been taken into account to obtain accurate RQPA, including the amorphous component with internal standard methodology, of hydrating cement pastes. The final goal of this second study was understanding the early-stage hydration mechanisms of a variety of cementing systems (Ordinary Portland Cement or Belite Alite Ye’elimite cement) as a function of water content, superplasticizer additives and type and content of sulfate source. In order to do so, X-ray powder diffraction data were taken in-situ with the humidity chamber coupled to the Mo-Kα1 powder diffractometer. Some results of this ongoing investigation will be reported and discussed.
Resumo:
This thesis presents investigations of chemical reactions occurring at the liquid/vapor interface studied using novel sampling methodologies coupled with detection by mass spectrometry. Chapters 2 and 3 utilize the recently developed technique of field-induced droplet ionization mass spectrometry (FIDI-MS), in which the application of a strong electric field to a pendant microliter droplet results in the ejection of highly charged progeny droplets from the liquid surface. In Chapter 2, this method is employed to study the base-catalyzed dissociation of a surfactant molecule at the liquid/vapor interface upon uptake of ammonia from the gas phase. This process is observed to occur without significant modulation of the bulk solution pH, suggesting a transient increase in surface pH following the uptake of gaseous ammonia. Chapter 3 presents real-time studies of the oxidation of the model tropospheric organic compound glycolaldehyde by photodissociation of iron (III) oxalate complexes. The oxidation products of glycolaldehyde formed in this process are identified, and experiments in a deoxygenated environment identify the role of oxygen in the oxidation pathway and in the regeneration of iron (III) following photo-initiated reduction. Chapter 4 explores alternative methods for the study of heterogeneous reaction processes by mass spectrometric sampling from liquid surfaces. Bursting bubble ionization (BBI) and interfacial sampling with an acoustic transducer (ISAT) generate nanoliter droplets from a liquid surface that can be sampled via the atmospheric pressure interface of a mass spectrometer. Experiments on the oxidation of oleic acid by ozone using ISAT are also presented. Chapters 5 and 6 detail mechanistic studies and applications of free-radical-initiated peptide sequencing (FRIPS), a technique employing gas-phase free radical chemistry to the sequencing of peptides and proteins by mass spectrometry. Chapter 5 presents experimental and theoretical studies on the anomalous mechanism of dissociation observed in the presence of serine and threonine residues in peptides. Chapter 6 demonstrates the combination of FRIPS with ion mobility-mass spectrometry (IM-MS) for the separation of isomeric peptides.
Resumo:
Resumo: A utilização do composto orgânico proveniente de resíduos da criação e abate de pequenos ruminantes pode elevar a produção de matéria seca do capim-elefante, tendo em vista o teor de nutrientes contidos nesse fertilizante orgânico, diminuindo os impactos da produção animal sobre o ambiente e reduzindo os custos de produção na área de capineira de capim-elefante. Dada à escassez de informações na literatura e a importância do manejo adequado da adubação orgânica na agropecuária, objetivou-se avaliar os atributos químicos e físicos do solo, o estado nutricional e a produção do capim-elefante submetido à aplicação de doses do composto orgânico proveniente de resíduos da produção e abate de pequenos ruminantes. O delineamento experimental adotado foi em parcelas subdivididas, com medidas repetidas no tempo, sendo as parcelas as doses (0; 13,3; 26,6; 39,9; 52,3; 79,8 t ha-1 ) de composto orgânico e um tratamento adicional com adubos minerais e as subparcelas os ciclos (1, 2, 3 e 4) com 4 blocos, totalizando 28 parcelas. As variáveis mensuradas foram atributos físicos e químicos do solo, a diagnose foliar e a produtividade de capim-elefante. Para o fator ciclo, a adubação orgânica incrementou a umidade gravimétrica e umidade volumétrica e ainda houve diminuição da densidade de partículas em função dos ciclos. Com as doses do fertilizante orgânico houve aumento nas concentrações da matéria orgânica, amônio, nitrato, amônio + nitrato, fósforo e saturação por base; houve redução do valor da acidez potencial, além da elevação dos teores de nitrogênio e fósforo nas plantas. As doses de composto orgânico aumentaram a biomassa de forragem total de capim elefante. A adubação mineral proporcionou maior incremento da produção do capim em relação à adubação orgânica no decorrer dos ciclos. Abstract: The use of organic compost from residues of production and slaughter of small ruminants can increase dry matter production of elephant grass, in due function of quantity nutrients in this compost, thus reducing the animal production impacts in the environment and production costs in elephant grass fields. Due to the Lack of information in literature and the importance regarding organic fertilization in agriculture, the aim of this work was evaluate chemical and physical soil attributes, nutritional status in plants and production of elephant grass in function of doses of organic compound of residues of production and slaughter of small ruminants. The experimental design was in split-plot, with the main treatment the doses (0; 13,3; 26,6; 39,9; 52,3; 79,8 t ha-1 ) of organic compost and one additional treatment with mineral fertilization and secondary treatments was the cycles (1, 2, 3 and 4) with 4 blocks, and 28 plots. The measured variables were physical and chemical attributes in the soil, nutritional diagnosis in plants and production of elephant grass. For cycle factor the organic fertilization increased gravimetric and volumetric humidity, yet, occurred decrease of density in function of cycles. With the doses of organic compost increased organic matter, ammonium, nitrate, ammonium + nitrate, phosphor and base saturation; and decreased the value of potential acidity; and increased content of N and P in plants. The doses of organic compost increased the elephant grass production. The mineral fertilization increased the elephant grass production in relation of organic fertilization over the cycles.
Resumo:
Reactive nitrogen (Nr=NO, NO2, HONO) and volatile organic carbon emissions from oil and gas extraction activities play a major role in wintertime ground-level ozone exceedance events of up to 140 ppb in the Uintah Basin in eastern Utah. Such events occur only when the ground is snow covered, due to the impacts of snow on the stability and depth of the boundary layer and ultraviolet actinic flux at the surface. Recycling of reactive nitrogen from the photolysis of snow nitrate has been observed in polar and mid-latitude snow, but snow-sourced reactive nitrogen fluxes in mid-latitude regions have not yet been quantified in the field. Here we present vertical profiles of snow nitrate concentration and nitrogen isotopes (δ15N) collected during the Uintah Basin Winter Ozone Study 2014 (UBWOS 2014), along with observations of insoluble light-absorbing impurities, radiation equivalent mean ice grain radii, and snow density that determine snow optical properties. We use the snow optical properties and nitrate concentrations to calculate ultraviolet actinic flux in snow and the production of Nr from the photolysis of snow nitrate. The observed δ15N(NO3-) is used to constrain modeled fractional loss of snow nitrate in a snow chemistry column model, and thus the source of Nr to the overlying boundary layer. Snow-surface δ15N(NO3-) measurements range from -5‰ to 10‰ and suggest that the local nitrate burden in the Uintah Basin is dominated by primary emissions from anthropogenic sources, except during fresh snowfall events, where remote NOx sources from beyond the basin are dominant. Modeled daily-averaged snow-sourced Nr fluxes range from 5.6-71x107 molec cm-2 s-1 over the course of the field campaign, with a maximum noon-time value of 3.1x109 molec cm-2 s-1. The top-down emission estimate of primary, anthropogenic NOx in the Uintah and Duchesne counties is at least 300 times higher than the estimated snow NOx emissions presented in this study. Our results suggest that snow-sourced reactive nitrogen fluxes are minor contributors to the Nr boundary layer budget in the highly-polluted Uintah Basin boundary layer during winter 2014.
Resumo:
Elephant grass and castor cake when combined can make a promising organic fertilizer. However, castor cake contains potentially toxic chemicals, such as ricin and ricinine. To test potential effects of these chemicals, compost piles of elephant grass ( Pennisetum purpureum Schum.) with castor cake were prepared with different C:N ratios (T1 = 40, T2 = 30, T3 = 20; T4 = 30 [control, elephant grass + crotalaria]) to evaluate colonization by edaphic fauna and any suppressive effects of castor cake. Soil organisms were collected with Berlese-Tullgren funnels. There were temporal differences between the treatments, and the epigeous fauna was mainly represented by members of the Acari and Entomobryomorpha. Elapsed time is the major factor in determining the composition of the epigeous fauna community associated with composting, indicating that castor cake has no suppressive effect.
Resumo:
A utilização do composto orgânico proveniente de resíduos da criação e abate de pequenos ruminantes pode elevar a produção de matéria seca do capim-elefante, tendo em vista o teor de nutrientes contidos nesse fertilizante orgânico, diminuindo os impactos da produção animal sobre o ambiente e reduzindo os custos de produção na área de capineira de capim-elefante. Dada à escassez de informações na literatura e a importância do manejo adequado da adubação orgânica na agropecuária, objetivou-se avaliar os atributos químicos e físicos do solo, o estado nutricional e a produção do capim-elefante submetido à aplicação de doses do composto orgânico proveniente de resíduos da produção e abate de pequenos ruminantes. O delineamento experimental adotado foi em parcelas subdivididas, com medidas repetidas no tempo, sendo as parcelas as doses (0; 13,3; 26,6; 39,9; 52,3; 79,8 t ha-1) de composto orgânico e um tratamento adicional com adubos minerais e as subparcelas os ciclos (1, 2, 3 e 4) com 4 blocos, totalizando 28 parcelas. As variáveis mensuradas foram atributos físicos e químicos do solo, a diagnose foliar e a produtividade de capim-elefante. Para o fator ciclo, a adubação orgânica incrementou a umidade gravimétrica e umidade volumétrica e ainda houve diminuição da densidade de partículas em função dos ciclos. Com as doses do fertilizante orgânico houve aumento nas concentrações da matéria orgânica, amônio, nitrato, amônio + nitrato, fósforo e saturação por base; houve redução do valor da acidez potencial, além da elevação dos teores de nitrogênio e fósforo nas plantas. As doses de composto orgânico aumentaram a biomassa de forragem total de capimelefante. A adubação mineral proporcionou maior incremento da produção do capim em relação à adubação orgânica no decorrer dos ciclos. Abstract: The use of organic compost from residues of production and slaughter of small ruminants can increase dry matter production of elephant grass, in due function of quantity nutrients in this compost, thus reducing the animal production impacts in the environment and production costs in elephant grass fields. Due to the Lack of information in literature and the importance regarding organic fertilization in agriculture, the aim of this work was evaluate chemical and physical soil attributes, nutritional status in plants and production of elephant grass in function of doses of organic compound of residues of production and slaughter of small ruminants. The experimental design was in split-plot, with the main treatment the doses (0; 13,3; 26,6; 39,9; 52,3; 79,8 t ha-1 ) of organic compost and one additional treatment with mineral fertilization and secondary treatments was the cycles (1, 2, 3 and 4) with 4 blocks, and 28 plots. The measured variables were physical and chemical attributes in the soil, nutritional diagnosis in plants and production of elephant grass. For cycle factor the organic fertilization increased gravimetric and volumetric humidity, yet, occurred decrease of density in function of cycles. With the doses of organic compost increased organic matter, ammonium, nitrate, ammonium + nitrate, phosphor and base saturation; and decreased the value of potential acidity; and increased content of N and P in plants. The doses of organic compost increased the elephant grass production. The mineral fertilization increased the elephant grass production in relation of organic fertilization over the cycles.
Resumo:
This paper describes the procedures of the analysis Of Pollutant gases, as volatile organic compounds (benzene, toluene, ethylbenzene, o-xylene, m-xylene and p-xylene) emitted by engines, using high-resolution gas chromatography (HRGC). In a broad sense, CI engine burning diesel was compared with B10 and a drastic reduction was observed in the emissions of the aromatic compounds by using B10. Especially for benzene, the reduction of concentrations occurs on the level of about 19.5%. Although a concentration value below 1 mu g ml(-1) has been obtained, this reduction is extremely significant since benzene is a carcinogenic compound. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This dissertation focuses on characterizing the emissions of volatile organic compounds (VOCs) from grasses and young trees, and the burning of biomass mainly from Africa and Indonesia. The measurements were performed with a proton-transfer-reaction mass spectrometer (PTR-MS). The biogenic emissions of tropical savanna vegetation were studied in Calabozo (Venezuela). Two field campaigns were carried out, the first during the wet season (1999) and the second during the dry season (2000). Three grass species were studied: T. plumosus, H. rufa and A. canescens, and the tree species B. crassifolia, C. americana and C. vitifolium. The emission rates were determined with a dynamic plant enclosure system. In general, the emissions increased exponentially with increasing temperature and solar radiation. Therefore, the emission rates showed high variability. Consequently, the data were normalized to a standard temperature of 30°C, and standard emission rates thus determined allowed for interspecific and seasonal comparisons. The range of average daytime (10:00-16:00) emission rates of total VOCs measured from green (mature and young) grasses was between 510-960 ngC/g/h. Methanol was the primary emission (140-360 ngC/g/h), followed by acetaldehyde, butene and butanol and acetone with emission rates between 70-200 ngC/g/h. The emissions of propene and methyl ethyl ketone (MEK) were <80 ngC/g/h, and those of isoprene and C5-alcohols were between 10-130 ngC/g/h. The oxygenated species represented 70-75% of the total. The emission of VOCs was found to vary by up to a factor of three between plants of the same species, and by up to a factor of two between the different species. The annual source of methanol from savanna grasses worldwide estimated in this work was 3 to 4.4 TgC, which could represent up to 12% of the current estimated global emission from terrestrial vegetation. Two of the studied tree species, were isoprene emitters, and isoprene was also their primary emission (which accounted for 70-94% of the total carbon emitted) followed by methanol and butene + butanol. The daytime average emission rate of isoprene measured in the wet season was 27 mgC/g/h for B. crassifolia, and 123 mgC/g/h for C. vitifolium. The daytime emissions of methanol and butene + butanol were between 0.3 and 2 mgC/g/h. The total sum of VOCs emission measured during the day in the wet season was between 30 and 130 mgC/g/h. In the dry season, in contrast, the methanol emissions from C. vitifolium saplings –whose leaves were still developing– were an order of magnitude higher than in the wet season (15 mgC/g/h). The isoprene emission from B. crassifolia in the dry season was comparable to the emission in the wet season, whereas isoprene emission from C. vitifolium was about a factor of three lower (~43 mgC/g/h). Biogenic emission inventories show that isoprenoids are the most prominent and best-studied compounds. The standard emission rates of isoprene and monoterpenes of the measured savanna trees were in the lower end of the range found in the literature. The emission of other biogenic VOCs has been sparsely investigated, but in general, the standard emissions from trees studied here were within the range observed in previous investigations. The biomass burning study comprised the measurement of VOCs and other trace-gas emissions of 44 fires from 15 different fuel types, primarily from Africa and Indonesia, in a combustion laboratory. The average sum of emissions (excluding CO2, CO and NO) from African fuels was ~18 g(VOC)/kg. Six of the ten most important emissions were oxygenated VOCs. Acetic acid was the major emission, followed by methanol and formaldehyde. The emission of methane was of the same order as the methanol emission (~5 g/kg), and that of nitrogen-containing compounds was ~1 g/kg. An estimate of the VOC source from biomass burning of savannas and grasslands worldwide suggests that the sum of emissions is about 56 Tg/yr, of which 34 Tg correspond to oxygenated VOCs, 14 Tg to unsaturated and aromatic compounds, 5 Tg to methane and 3 Tg to N-compounds. The estimated emissions of CO, CO2 and NO are 216, 5117 and 9.4 Tg/yr, respectively. The emission factors reported here for Indonesian fuels are the first results of laboratory fires using Indonesian fuels. Acetic acid was the highest organic emission, followed by acetol, a compound not previously reported in smoke, methane, mass 97 (tentatively identified as furfural, dimethylfuran and ethylfuran), and methanol. The sum of total emissions of Indonesian fuels was 91 g/kg, which is 5 times higher than the emissions from African fuels. The results of this study reinforces the importance of oxygenated compounds. Due to the vast area covered by tropical savannas worldwide, the biogenic and biomass burning emission of methanol and other oxygenated compounds may be important for the regional and even global tropospheric chemistry.