996 resultados para Nutrient efficiency
Resumo:
The second edition of An Introduction to Efficiency and Productivity Analysis is designed to be a general introduction for those who wish to study efficiency and productivity analysis. The book provides an accessible, well-written introduction to the four principal methods involved: econometric estimation of average response models; index numbers, data envelopment analysis (DEA); and stochastic frontier analysis (SFA). For each method, a detailed introduction to the basic concepts is presented, numerical examples are provided, and some of the more important extensions to the basic methods are discussed. Of special interest is the systematic use of detailed empirical applications using real-world data throughout the book. In recent years, there have been a number of excellent advance-level books published on performance measurement. This book, however, is the first systematic survey of performance measurement with the express purpose of introducing the field to a wide audience of students, researchers, and practitioners. Indeed, the 2nd Edition maintains its uniqueness: (1) It is a well-written introduction to the field. (2) It outlines, discusses and compares the four principal methods for efficiency and productivity analysis in a well-motivated presentation. (3) It provides detailed advice on computer programs that can be used to implement these performance measurement methods. The book contains computer instructions and output listings for the SHAZAM, LIMDEP, TFPIP, DEAP and FRONTIER computer programs. More extensive listings of data and computer instruction files are available on the book's website: (www.uq.edu.au/economics/cepa/crob2005).
Resumo:
This Toolkit was developed for the Australian dairy processing industry on behalf of Dairy Australia. At the conclusion of the project, industry participants gained exclusive access to a comprehensive Eco-Efficiency Manual, which outlined many of the opportunities available to the industry. Summary fact sheets were also prepared as publicly available resources and these are available for download below
Resumo:
This manual has been developed to help the Australian dairy processing industry increase its competitiveness through increased awareness and uptake of eco-efficiency. The manual seeks to consolidate and build on existing knowledge, accumulated through projects and initiatives that the industry has previously undertaken to improve its use of raw materials and resources and reduce the generation of wastes. Where there is an existing comprehensive report or publication, the manual refers to this for further information. Eco-efficiency is about improving environmental performance to become more efficient and profitable. It is about producing more with less. It involves applying strategies that will not only ensure efficient use of resources and reduction in waste, but will also reduce costs. This chapter outlines the environmental challenges faced by Australian dairy processors. The manual explores opportunities for reducing environmental impacts in relation to water, energy, product yield, solid and liquid waste reduction and chemical use.
Resumo:
To simulate cropping systems, crop models must not only give reliable predictions of yield across a wide range of environmental conditions, they must also quantify water and nutrient use well, so that the status of the soil at maturity is a good representation of the starting conditions for the next cropping sequence. To assess the suitability for this task a range of crop models, currently used in Australia, were tested. The models differed in their design objectives, complexity and structure and were (i) tested on diverse, independent data sets from a wide range of environments and (ii) model components were further evaluated with one detailed data set from a semi-arid environment. All models were coded into the cropping systems shell APSIM, which provides a common soil water and nitrogen balance. Crop development was input, thus differences between simulations were caused entirely by difference in simulating crop growth. Under nitrogen non-limiting conditions between 73 and 85% of the observed kernel yield variation across environments was explained by the models. This ranged from 51 to 77% under varying nitrogen supply. Water and nitrogen effects on leaf area index were predicted poorly by all models resulting in erroneous predictions of dry matter accumulation and water use. When measured light interception was used as input, most models improved in their prediction of dry matter and yield. This test highlighted a range of compensating errors in all modelling approaches. Time course and final amount of water extraction was simulated well by two models, while others left up to 25% of potentially available soil water in the profile. Kernel nitrogen percentage was predicted poorly by all models due to its sensitivity to small dry matter changes. Yield and dry matter could be estimated adequately for a range of environmental conditions using the general concepts of radiation use efficiency and transpiration efficiency. However, leaf area and kernel nitrogen dynamics need to be improved to achieve better estimates of water and nitrogen use if such models are to be use to evaluate cropping systems. (C) 1998 Elsevier Science B.V.
Resumo:
Transpiration efficiency, W, the ratio of plant carbon produced to water transpired and carbon isotope discrimination of leaf dry matter, Delta(d)' were measured together on 30 lines of the C-4 species, Sorghum bicolor in the glasshouse and on eight lines grown in the field. In the glasshouse, the mean W observed was 4.9 mmol C mol(-1) H2O and the range was 0.8 mmol C mol(-1) H2O The mean Delta(d) was 3.0 parts per thousand and the observed range was 0.4 parts per thousand. In the field, the mean W was lower at 2.8 mmol C mol H2O and the mean Delta(d) was 4.6 parts per thousand. Significant positive correlations between W and Delta(d) were observed for plants grown in the glasshouse and in the field. The observed correlations were consistent with theory, opposite to those for C-4 species, and showed that variation in Delta(d) was an integrated measure of long-term variation in the ratio of intercellular to ambient CO2 partial pressure, p(i)/p(a). Detailed gas exchange measurements of carbon isotope discrimination during CO2 uptake, Delta(A) and p(i)/p(a) were made on leaves of eight S. bicolor lines. The observed relationship between Delta(A) and p(i)/p(a) was linear with a negative slope of 3.7 parts per thousand in Delta(A) for a unit change in p(i)/p(a). The slope of this linear relationship between Delta(A) and p(i)/p(a) in C-4 species is dependent on the leakiness of the CO2 concentrating mechanism of the C pathway, We estimated the leakiness (defined as the fraction of CO2 released in the bundle sheath by C-4 acid decarboxylations, which is lost by leakage) to be 0.2. We conclude that, although variation in Delta(d) observed in the 30 lines of S. bicolor is smaller than that commonly observed in C-4 species, it also reflects variation in transpiration efficiency, W. Among the eight lines examined in detail and in the environments used, there was considerable genotype x environment interaction.
Resumo:
Theoretical analyses have shown the radiation use efficiency of maize, soybean, and peanut to increase with a decrease in the level of incident radiation and an increase in the proportion of diffuse radiation. This study compared the growth and radiation use efficiency of Panicum maximum cv. Petrie (green panic) and Bothriochloa insculpta cv. Bisset (creeping bluegrass) beneath shading treatments (birdguard and solarweave shadecloths) with that in full sunlight. A level of incident radiation reduced by 25% under birdguard shadecloth decreased final yield and final leaf area index, but increased canopy leaf nitrogen concentration and radiation use efficiency (19-14%) (compared with the full sun treatment). A similar level of reduced incident radiation under solarweave shadecloth (which provided an increased proportion of diffuse radiation), increased final yield and radiation use efficiency (46-50%). An understanding of the effects of composition of incident radiation on radiation use efficiency of tropical grasses enables more accurate estimation of potential pasture growth in shaded environments. It also has impact upon crop production in glasshouses and greenhouses.
Resumo:
Microencapsulation of lemon oil was undertaken with beta-cyclodextrin using a precipitation method at the five lemon oil to beta-cyclodextrin ratios of 3:97, 6:94, 9:91, 12:88, and 15:85 (w/w) in order to determine the effect of the ratio of lemon oil to beta-cyclodextrin on the inclusion efficiency of beta-cyclodextrin for encapsulating oil volatiles. The retention of lemon oil volatiles reached a maximum at the lemon oil to beta-cyclodextrin ratio of 6:94; however, the maximum inclusion capacity of beta-cyclodextrin and a maximum powder recovery were achieved at the ratio of 12:88, in which the beta-cyclodextrin complex contained 9.68% (w/w) lemon oil. The profile and proportion of selected flavor compounds in the beta-cyclodextrin complex and the starting lemon oil were not significantly different.
Resumo:
The nutrient contents and accessions in litterfall over a period of 3 y are reported for undisturbed areas and at two sites disturbed by selective harvesting in tropical rain forest in North Queensland, Australia. Mean concentrations (mg g(-1) dry weight) of nutrients in litterfall ranged from 10 to 12 for nitrogen; 0.33 to 0.43 for phosphorus; 3.6 to 4.3 for potassium; 6.0 to 10.5 for calcium and 1.7 to 2.6 for magnesium. These concentrations are in the middle to lower part of the spectrum of values recorded for tropical forest. Accessions of nutrients in litterfall (kg ha(-1) y(-1)) ranged from 59 to 64 N; 1.9 to 2.4 P; 20 to 24K; 34 to 63 Ca; and 9 to 16 Mg. These rates, particularly for IN and P, are among the lowest recorded for tropical forests. There were no consistent between-site differences in total nutrient accessions in small litterfall. In terms of the contribution of litterfall to the accessions of nutrients to the forest floor, this suggests that the logged sites have recovered from the effects of selective harvesting within 25 y. Nutrient accessions at each site were distinctly seasonal, with maximum accessions occurring in the late dry season to late in the wet season. Leaf-fall accounted for the largest proportion of nutrient accessions over the study period, although at certain times accessions in both reproductive material and wood were significant. A cyclone which crossed the coast near the study sites resulted in large nutrient accessions over a short period but had little effect on the total annual accession. A comparison with previous studies of litterfall in Australian tropical rainforests indicates that nutrient return in litterfall is directly related to soil fertility.
Resumo:
Strawberry (Fragaria ananassa cv. Shikinari) cell suspension cultures carried out in shake flasks for 18 d were closely examined for cell growth, anthocyanin synthesis and the development of pigmented cells in relation to the uptake of carbohydrate, extracellular PO4, NO3, NH4, and calcium. Cell viability, extracellular anthocyanin content, pH and electrical conductivity of the broth were also monitored. The specific growth rate of strawberry cells at exponential phase was 0.27 and 0.28 d(-1) based on fresh and dry weight, respectively. Anthocyanin synthesis was observed to increase continuously to a maximum value of 0.86 mg/g fresh cell weight (FCW) at day 6, and was partially growth-associated. Anthocyanin synthesis was linearly related to the increase in pigmented cell ratio, which increased with time and reached a maximum value of ca. 70% at day 6 due to reduction in cell viability and depletion of substrate. Total carbohydrate uptake was closely associated with increase in cell growth, and glucose was utilized in preference to fructose. Nitrate and ammonia were consumed until 9 d of culture, but phosphate was completely absorbed within 4 d. Calcium was assimilated throughout the growth cycle. After 9 d, cell lysis was observed which resulted in the leakage of intracellular substances and a concomitant pH rise. Anthocyanin was never detected in the broth although the broth became darkly pigmented during the lysis period. This suggests that anthocyanin was synthesized only by viable pigmented cells, and degraded rapidly upon cell death and lysis. Based on the results of kinetic analysis, a model was developed by incorporating governing equations for the ratio of pigmented cells into a Bailey and Nicholson's model. This was verified by comparison with the experimental data. The results suggest Bat the model satisfactorily describes the strawberry cell culture process, and may thus be used for process optimization.
Resumo:
Microencapsulation of lemon oil was undertaken by kneading with beta-cyclodextrin, at a beta-cyclodextrin to lemon oil ratio of 88:12 (w/w). The resulting paste samples of the complex were vacuum- or spray-dried. Ten selected lemon oil flavor volatiles (alpha-pinene, sabinene, beta-pinene, beta-myrcene, limonene, gamma-terpinene, terpinolene, linalool, neral, and geranial) in the complex were analyzed periodically after 1, 2, 5, 10, 15, 20, and 30 min of kneading time. The results indicated that the levels of these volatiles were not significantly different (P > 0.05) irrespective of mixing time or type of the drying (vacuum- or spray-drying) used. An optimum mixing time was found to be 15 min, at which time the maximum encapsulation of lemon oil (97.7 mg/g of beta-cyclodextrin) was obtained in the complex powder.
Resumo:
Pulse-amplitude-modulation chlorophyll fluorometry was used to examine changes in dark-adapted F-v/F-m of endosymbiotic dinoflagellate microalgae within the tissues of the temperate coral Plesiastrea versipora exposed to elevated seawater temperature. The F-v/F-m was markedly reduced following exposure of corals to 28 degrees C for 48 h. When corals were returned to ambient (24 degrees C) conditions, F-v/F-m increased in an initial rapid and then secondary slower phase. Tissue discolouration (coral bleaching), caused by a significant decrease in the density of algae, was observed during the first 2-3 days of the recovery period. After 14 days, F-v/F-m was still significantly lower than in control corals. The recovery of F-v/F-m is discussed in terms of repair processes within the symbiotic algae, division of healthy algae and also the selective removal of photo-damaged dinoflagellates. Under field conditions, bleached corals sampled at Heron Island Reef during a bleaching event had significantly lower F-v/F-m than non-bleached colonies; four months after the bleaching event, there were no differences in F-v/F-m or algal density in corals marked as having bleached or having shown no signs of colour loss. The results of this laboratory and field study are consistent with the hypothesis that an impairment of photosynthesis occurs during heat-stress, and is the underlying cause of coral bleaching.
Resumo:
Most soils contain preferential flow paths that can impact on solute mobility. Solutes can move rapidly down the preferential flow paths with high pore-water velocities, but can be held in the less permeable region of the soil matrix with low pore-water velocities, thereby reducing the efficiency of leaching. In this study, we conducted leaching experiments with interruption of the flow and drainage of the main flow paths to assess the efficiency of this type of leaching. We compared our experimental results to a simple analytical model, which predicts the influence of the variations in concentration gradients within a single spherical aggregate (SSA) surrounded by preferential flow paths on leaching. We used large (length: 300 mm, diameter: 216 mm) undisturbed field soil cores from two contrasting soil types. To carry out intermittent leaching experiments, the field soil cores were first saturated with tracer solution (CaBr2), and background solution (CaCl2) was applied to mimic a leaching event. The cores were then drained at 25- to 30-cm suction to empty the main flow paths to mimic a dry period during which solutes could redistribute within the undrained region. We also conducted continuous leaching experiments to assess the impact of the dry periods on the efficiency of leaching. The flow interruptions with drainage enhanced leaching by 10-20% for our soils, which was consistent with the model's prediction, given an optimised equivalent aggregate radius for each soil. This parameter quantifies the time scales that characterise diffusion within the undrained region of the soil, and allows us to calculate the duration of the leaching events and interruption periods that would lead to more efficient leaching. Application of these methodologies will aid development of strategies for improving management of chemicals in soils, needed in managing salts in soils, in improving fertiliser efficiency, and in reclaiming contaminated soils. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Intelligence (IQ) can be seen as the efficiency of mental processes or cognition, as can basic information processing (IP) tasks like those used in our ongoing Memory, Attention and Problem Solving (MAPS) study. Measures of IQ and IP are correlated and both have a genetic component, so we are studying how the genetic variance in IQ is related to the genetic variance in IP. We measured intelligence with five subscales of the Multidimensional Aptitude Battery (MAB). The IP tasks included four variants of choice reaction time (CRT) and a visual inspection time (IT). The influence of genetic factors on the variances in each of the IQ, IP, and IT tasks was investigated in 250 identical and nonidentical twin pairs aged 16 years. For a subset of 50 pairs we have test–retest data that allow us to estimate the stability of the measures. MX was used for a multivariate genetic analysis that addresses whether the variance in IQ and IP measures is possibly mediated by common genetic factors. Analyses that show the modeled genetic and environmental influences on these measures of cognitive efficiency will be presented and their relevance to ideas on intelligence will be discussed.