897 resultados para Numerical Analysis and Scientific Computing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The need for renewable energy sources, facing the consequences of Climate Change, results in growing investment for solar collectors’ use. Research in this field has accompanied this expansion and evacuated tube solar collector stands as an important study focus. Thus, several works have been published for representing the stratification of the fluid inside the tubes and the reservoir, as well as analytical modeling for the heat flow problem. Based on recent publications, this paper proposes the study of solar water heating with evacuated tubes, their operation characteristics and operating parameters. To develop this work, a computational tool will be used - in this case, the application of computational fluid dynamics (CFD) software. In possession of the implemented model, a numerical simulation will be performed to evaluate the behavior of the fluid within this solar collector and possible improvements to be applied in the model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, an experimental and numerical analysis and characterization of functionally graded structures (FGSs) is developed. Nickel (Ni) and copper (Cu) materials are used as basic materials in the numerical modeling and experimental characterization. For modeling, a MATLAB finite element code is developed, which allows simulation of harmonic and modal analysis considering the graded finite element formulation. For experimental characterization, Ni-Cu FGSs are manufactured by using spark plasma sintering technique. Hardness and Young's modulus are found by using microindentation and ultrasonic measurements, respectively. The effective gradation of Ni/Cu FGS is addressed by means of optical microscopy, energy dispersive spectrometry, scanning electron microscopy and hardness testing. For the purpose of comparing modeling and experimental results, the hardness curve, along the gradation direction, is used for identifying the gradation profile; accordingly, the experimental hardness curve is used for approximating the Young's modulus variation and the graded finite element modeling is used for verification. For the first two resonance frequency values, a difference smaller than 1% between simulated and experimental results is obtained. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Considering that the process of teacher training in universities takes into account the confrontation of knowledge produced by the scientific methods, the current study intended to identify what are the main contributions of the Brazilian scientific production of Physical Education teaching. Therefore, an exploratory study was done from the articles published on the subject in the two main periodicals of the area. The data analyzes allowed us to verify the relevancy of the knowledge produced and to suggest alternatives to its inclusion in the docent training programs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we probe the stability of a z = 3 three-dimensional Lifshitz black hole by using scalar and spinorial perturbations. We found an analytical expression for the quasinormal frequencies of the scalar probe field, which perfectly agree with the behavior of the quasinormal modes obtained numerically. The results for the numerical analysis of the spinorial perturbations reinforce the conclusion of the scalar analysis, i.e., the model is stable under scalar and spinor perturbations. As an application we found the area spectrum of the Lifshitz black hole, which turns out to be equally spaced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computational fluid dynamics, CFD, is becoming an essential tool in the prediction of the hydrodynamic efforts and flow characteristics of underwater vehicles for manoeuvring studies. However, when applied to the manoeuvrability of autonomous underwater vehicles, AUVs, most studies have focused on the de- termination of static coefficients without considering the effects of the vehicle control surface deflection. This paper analyses the hydrodynamic efforts generated on an AUV considering the combined effects of the control surface deflection and the angle of attack using CFD software based on the Reynolds-averaged Navier–Stokes formulations. The CFD simulations are also independently conducted for the AUV bare hull and control surface to better identify their individual and interference efforts and to validate the simulations by comparing the experimental results obtained in a towing tank. Several simulations of the bare hull case were conducted to select the k –ω SST turbulent model with the viscosity approach that best predicts its hydrodynamic efforts. Mesh sensitivity analyses were conducted for all simulations. For the flow around the control surfaces, the CFD results were analysed according to two different methodologies, standard and nonlinear. The nonlinear regression methodology provides better results than the standard methodology does for predicting the stall at the control surface. The flow simulations have shown that the occurrence of the control surface stall depends on a linear relationship between the angle of attack and the control surface deflection. This type of information can be used in designing the vehicle’s autopilot system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of Concurrency Theory to Systems Biology is in its earliest stage of progress. The metaphor of cells as computing systems by Regev and Shapiro opened the employment of concurrent languages for the modelling of biological systems. Their peculiar characteristics led to the design of many bio-inspired formalisms which achieve higher faithfulness and specificity. In this thesis we present pi@, an extremely simple and conservative extension of the pi-calculus representing a keystone in this respect, thanks to its expressiveness capabilities. The pi@ calculus is obtained by the addition of polyadic synchronisation and priority to the pi-calculus, in order to achieve compartment semantics and atomicity of complex operations respectively. In its direct application to biological modelling, the stochastic variant of the calculus, Spi@, is shown able to model consistently several phenomena such as formation of molecular complexes, hierarchical subdivision of the system into compartments, inter-compartment reactions, dynamic reorganisation of compartment structure consistent with volume variation. The pivotal role of pi@ is evidenced by its capability of encoding in a compositional way several bio-inspired formalisms, so that it represents the optimal core of a framework for the analysis and implementation of bio-inspired languages. In this respect, the encodings of BioAmbients, Brane Calculi and a variant of P Systems in pi@ are formalised. The conciseness of their translation in pi@ allows their indirect comparison by means of their encodings. Furthermore it provides a ready-to-run implementation of minimal effort whose correctness is granted by the correctness of the respective encoding functions. Further important results of general validity are stated on the expressive power of priority. Several impossibility results are described, which clearly state the superior expressiveness of prioritised languages and the problems arising in the attempt of providing their parallel implementation. To this aim, a new setting in distributed computing (the last man standing problem) is singled out and exploited to prove the impossibility of providing a purely parallel implementation of priority by means of point-to-point or broadcast communication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clusters have increasingly become an essential part of policy discourses at all levels, EU, national, regional, dealing with regional development, competitiveness, innovation, entrepreneurship, SMEs. These impressive efforts in promoting the concept of clusters on the policy-making arena have been accompanied by much less academic and scientific research work investigating the actual economic performance of firms in clusters, the design and execution of cluster policies and going beyond singular case studies to a more methodologically integrated and comparative approach to the study of clusters and their real-world impact. The theoretical background is far from being consolidated and there is a variety of methodologies and approaches for studying and interpreting this phenomenon while at the same time little comparability among studies on actual cluster performances. The conceptual framework of clustering suggests that they affect performance but theory makes little prediction as to the ultimate distribution of the value being created by clusters. This thesis takes the case of Eastern European countries for two reasons. One is that clusters, as coopetitive environments, are a new phenomenon as the previous centrally-based system did not allow for such types of firm organizations. The other is that, as new EU member states, they have been subject to the increased popularization of the cluster policy approach by the European Commission, especially in the framework of the National Reform Programmes related to the Lisbon objectives. The originality of the work lays in the fact that starting from an overview of theoretical contributions on clustering, it offers a comparative empirical study of clusters in transition countries. There have been very few examples in the literature that attempt to examine cluster performance in a comparative cross-country perspective. It adds to this an analysis of cluster policies and their implementation or lack of such as a way to analyse the way the cluster concept has been introduced to transition economies. Our findings show that the implementation of cluster policies does vary across countries with some countries which have embraced it more than others. The specific modes of implementation, however, are very similar, based mostly on soft measures such as funding for cluster initiatives, usually directed towards the creation of cluster management structures or cluster facilitators. They are essentially founded on a common assumption that the added values of clusters is in the creation of linkages among firms, human capital, skills and knowledge at the local level, most often perceived as the regional level. Often times geographical proximity is not a necessary element in the application process and cluster application are very similar to network membership. Cluster mapping is rarely a factor in the selection of cluster initiatives for funding and the relative question about critical mass and expected outcomes is not considered. In fact, monitoring and evaluation are not elements of the cluster policy cycle which have received a lot of attention. Bulgaria and the Czech Republic are the countries which have implemented cluster policies most decisively, Hungary and Poland have made significant efforts, while Slovakia and Romania have only sporadically and not systematically used cluster initiatives. When examining whether, in fact, firms located within regional clusters perform better and are more efficient than similar firms outside clusters, we do find positive results across countries and across sectors. The only country with negative impact from being located in a cluster is the Czech Republic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research is aimed at contributing to the identification of reliable fully predictive Computational Fluid Dynamics (CFD) methods for the numerical simulation of equipment typically adopted in the chemical and process industries. The apparatuses selected for the investigation, specifically membrane modules, stirred vessels and fluidized beds, were characterized by a different and often complex fluid dynamic behaviour and in some cases the momentum transfer phenomena were coupled with mass transfer or multiphase interactions. Firs of all, a novel modelling approach based on CFD for the prediction of the gas separation process in membrane modules for hydrogen purification is developed. The reliability of the gas velocity field calculated numerically is assessed by comparison of the predictions with experimental velocity data collected by Particle Image Velocimetry, while the applicability of the model to properly predict the separation process under a wide range of operating conditions is assessed through a strict comparison with permeation experimental data. Then, the effect of numerical issues on the RANS-based predictions of single phase stirred tanks is analysed. The homogenisation process of a scalar tracer is also investigated and simulation results are compared to original passive tracer homogenisation curves determined with Planar Laser Induced Fluorescence. The capability of a CFD approach based on the solution of RANS equations is also investigated for describing the fluid dynamic characteristics of the dispersion of organics in water. Finally, an Eulerian-Eulerian fluid-dynamic model is used to simulate mono-disperse suspensions of Geldart A Group particles fluidized by a Newtonian incompressible fluid as well as binary segregating fluidized beds of particles differing in size and density. The results obtained under a number of different operating conditions are compared with literature experimental data and the effect of numerical uncertainties on axial segregation is also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research work carried out in focusing a novel multiphase-multilevel ac motor drive system much suitable for low-voltage high-current power applications. In specific, six-phase asymmetrical induction motor with open-end stator winding configuration, fed from four standard two-level three-phase voltage source inverters (VSIs). Proposed synchronous reference frame control algorithm shares the total dc source power among the 4 VSIs in each switching cycle with three degree of freedom. Precisely, first degree of freedom concerns with the current sharing between two three-phase stator windings. Based on modified multilevel space vector pulse width modulation shares the voltage between each single VSIs of two three-phase stator windings with second and third degree of freedom, having proper multilevel output waveforms. Complete model of whole ac motor drive based on three-phase space vector decomposition approach was developed in PLECS - numerical simulation software working in MATLAB environment. Proposed synchronous reference control algorithm was framed in MATLAB with modified multilevel space vector pulse width modulator. The effectiveness of the entire ac motor drives system was tested. Simulation results are given in detail to show symmetrical and asymmetrical, power sharing conditions. Furthermore, the three degree of freedom are exploited to investigate fault tolerant capabilities in post-fault conditions. Complete set of simulation results are provided when one, two and three VSIs are faulty. Hardware prototype model of quad-inverter was implemented with two passive three-phase open-winding loads using two TMS320F2812 DSP controllers. Developed McBSP (multi-channel buffered serial port) communication algorithm able to control the four VSIs for PWM communication and synchronization. Open-loop control scheme based on inverse three-phase decomposition approach was developed to control entire quad-inverter configuration and tested with balanced and unbalanced operating conditions with simplified PWM techniques. Both simulation and experimental results are always in good agreement with theoretical developments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A numerical investigation of dielectric barrier discharge aimed to simulate the electro hydro dynamic interaction is presented. A discharge drift diffusive model according to the Townsend avalanche is described and used to duplicate the plasma kinetics of a DBD actuator. The discharge characteristics dependence upon dielectric material and applied voltage are simulated and the EHD force field according to a simplified approach is presented and discussed. The coupling of DBD results with a fluid dynamic code is also shown. Finally, a new non invasive diagnostic technique for EHD interaction based on Schlieren imaging is computationally validated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this thesis, included within the THESEUS project, is the development of a mathematical model 2DV two-phase, based on the existing code IH-2VOF developed by the University of Cantabria, able to represent together the overtopping phenomenon and the sediment transport. Several numerical simulations were carried out in order to analyze the flow characteristics on a dike crest. The results show that the seaward/landward slope does not affect the evolution of the flow depth and velocity over the dike crest whereas the most important parameter is the relative submergence. Wave heights decrease and flow velocities increase while waves travel over the crest. In particular, by increasing the submergence, the wave height decay and the increase of the velocity are less marked. Besides, an appropriate curve able to fit the variation of the wave height/velocity over the dike crest were found. Both for the wave height and for the wave velocity different fitting coefficients were determined on the basis of the submergence and of the significant wave height. An equation describing the trend of the dimensionless coefficient c_h for the wave height was derived. These conclusions could be taken into consideration for the design criteria and the upgrade of the structures. In the second part of the thesis, new equations for the representation of the sediment transport in the IH-2VOF model were introduced in order to represent beach erosion while waves run-up and overtop the sea banks during storms. The new model allows to calculate sediment fluxes in the water column together with the sediment concentration. Moreover it is possible to model the bed profile evolution. Different tests were performed under low-intensity regular waves with an homogeneous layer of sand on the bottom of a channel in order to analyze the erosion-deposition patterns and verify the model results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Bioconductor project is an initiative for the collaborative creation of extensible software for computational biology and bioinformatics. We detail some of the design decisions, software paradigms and operational strategies that have allowed a small number of researchers to provide a wide variety of innovative, extensible, software solutions in a relatively short time. The use of an object oriented programming paradigm, the adoption and development of a software package system, designing by contract, distributed development and collaboration with other projects are elements of this project's success. Individually, each of these concepts are useful and important but when combined they have provided a strong basis for rapid development and deployment of innovative and flexible research software for scientific computation. A primary objective of this initiative is achievement of total remote reproducibility of novel algorithmic research results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this research is to provide a framework for vibro-acoustical analysis and design of a multiple-layer constrained damping structure. The existing research on damping and viscoelastic damping mechanism is limited to the following four mainstream approaches: modeling techniques of damping treatments/materials; control through the electrical-mechanical effect using the piezoelectric layer; optimization by adjusting the parameters of the structure to meet the design requirements; and identification of the damping material’s properties through the response of the structure. This research proposes a systematic design methodology for the multiple-layer constrained damping beam giving consideration to vibro-acoustics. A modeling technique to study the vibro-acoustics of multiple-layered viscoelastic laminated beams using the Biot damping model is presented using a hybrid numerical model. The boundary element method (BEM) is used to model the acoustical cavity whereas the Finite Element Method (FEM) is the basis for vibration analysis of the multiple-layered beam structure. Through the proposed procedure, the analysis can easily be extended to other complex geometry with arbitrary boundary conditions. The nonlinear behavior of viscoelastic damping materials is represented by the Biot damping model taking into account the effects of frequency, temperature and different damping materials for individual layers. A curve-fitting procedure used to obtain the Biot constants for different damping materials for each temperature is explained. The results from structural vibration analysis for selected beams agree with published closed-form results and results for the radiated noise for a sample beam structure obtained using a commercial BEM software is compared with the acoustical results of the same beam with using the Biot damping model. The extension of the Biot damping model is demonstrated to study MDOF (Multiple Degrees of Freedom) dynamics equations of a discrete system in order to introduce different types of viscoelastic damping materials. The mechanical properties of viscoelastic damping materials such as shear modulus and loss factor change with respect to different ambient temperatures and frequencies. The application of multiple-layer treatment increases the damping characteristic of the structure significantly and thus helps to attenuate the vibration and noise for a broad range of frequency and temperature. The main contributions of this dissertation include the following three major tasks: 1) Study of the viscoelastic damping mechanism and the dynamics equation of a multilayer damped system incorporating the Biot damping model. 2) Building the Finite Element Method (FEM) model of the multiple-layer constrained viscoelastic damping beam and conducting the vibration analysis. 3) Extending the vibration problem to the Boundary Element Method (BEM) based acoustical problem and comparing the results with commercial simulation software.