144 resultados para Novikov Cohomology
Resumo:
IBPOWER is a Project awarded under the 7th European Framework Programme that aims to advance research on intermediate band solar cells (IBSCs). These are solar cells conceived to absorb below bandgap energy photons by means of an electronic energy band that is located within the semiconductor bandgap, whilst producing photocurrent with output voltage still limited by the total semiconductor bandgap. IBPOWER employs two basic strategies for implementing the IBSC concept. The first is based on the use of quantum dots, the IB arising from the confined energy levels of the electrons in the dots. Quantum dots have led to devices that demonstrate the physical operation principles of the IB concept and have allowed identification of the problems to be solved to achieve actual high efficiencies. The second approach is based on the creation of bulk intermediate band materials by the insertion of an appropriate impurity into a bulk semiconductor. Under this approach it is expected that, when inserted at high densities, these impurities will find it difficult to capture electrons by producing a breathing mode and will cease behaving as non-radiative recombination centres. Towards this end the following systems are being investigated: a) Mn: In1-xGax N; b) transition metals in GaAs and c) thin films.
Resumo:
The purpose of this article is to describe certain results and conjectures concerning the structure of Galois cohomology groups and Selmer groups, especially for abelian varieties. These results are analogues of a classical theorem of Iwasawa. We formulate a very general version of the Weak Leopoldt Conjecture. One consequence of this conjecture is the nonexistence of proper Λ-submodules of finite index in a certain Galois cohomology group. Under certain hypotheses, one can prove the nonexistence of proper Λ-submodules of finite index in Selmer groups. An example shows that some hypotheses are needed.
Resumo:
We explain a technical result about p-adic cohomology and apply it to the study of Shimura varieties. The technical result applies to algebraic varieties with torsion-free cohomology, but for simplicity we only treat abelian varieties.
Resumo:
We discuss the relationship among certain generalizations of results of Hida, Ribet, and Wiles on congruences between modular forms. Hida’s result accounts for congruences in terms of the value of an L-function, and Ribet’s result is related to the behavior of the period that appears there. Wiles’ theory leads to a class number formula relating the value of the L-function to the size of a Galois cohomology group. The behavior of the period is used to deduce that a formula at “nonminimal level” is obtained from one at “minimal level” by dropping Euler factors from the L-function.
Resumo:
Mode of access: Internet.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
A verification task of proving the equivalence of two descriptions of the same device is examined for the case, when one of the descriptions is partially defined. In this case, the verification task is reduced to checking out whether logical descriptions are equivalent on the domain of the incompletely defined one. Simulation-based approach to solving this task for different vector forms of description representations is proposed. Fast Boolean computations over Boolean and ternary vectors having big sizes underlie the offered methods.
Resumo:
The problem of checking whether a system of incompletely specified Boolean functions is implemented by the given combinational circuit is considered. The task is reduced to testing out if two given logical descriptions are equivalent on the domain of one of them having functional indeterminacy. We present a novel SAT-based verification method that is used for testing whether the given circuit satisfies all the conditions represented by the system of incompletely specified Boolean functions.
Resumo:
In recent years, quantum-dot (QD) semiconductor lasers attract significant interest in many practical applications due to their advantages such as high-power pulse generation because to the high gain efficiency. In this work, the pulse shape of an electrically pumped QD-laser under high current is analyzed. We find that the slow rise time of the pulsed pump may significantly affect the high intensity output pulse. It results in sharp power dropouts and deformation of the pulse profile. We address the effect to dynamical change of the phase-amplitude coupling in the proximity of the excited state (ES) threshold. Under 30ns pulse pumping, the output pulse shape strongly depends on pumping amplitude. At lower currents, which correspond to lasing in the ground state (GS), the pulse shape mimics that of the pump pulse. However, at higher currents the pulse shape becomes progressively unstable. The instability is greatest when in proximity to the secondary threshold which corresponds to the beginning of the ES lasing. After the slow rise stage, the output power sharply drops out. It is followed by a long-time power-off stage and large-scale amplitude fluctuations. We explain these observations by the dynamical change of the alpha-factor in the QD-laser and reveal the role of the slowly rising pumping processes in the pulse shaping and power dropouts at higher currents. The modeling is in very good agreement with the experimental observations. © 2014 SPIE.
Resumo:
Full text: Semiconductor quantum dot lasers are attractive for multipletechnological applications in biophotonics. Simultaneous two-state lasing ofground state (GS) and excited state (ES) electrons and holes in QD lasers ispossible under a certain parameter range. It has already been investigated in steady-stateoperations and in dynamical regimes and is currently a subject of the intesiveresearch. It has been shown that the relaxation frequency in the two-state lasingregime is not a function of the total intensity [1], as could be traditionallyexpected.In this work we study damping relaxation oscillations in QD lasersimultaneously operating at two transitions, and find that under variouspumping conditions, the frequency of oscillations may decrease, increase orstay without change in time as shown in Fig1.The studied QD laser structure wasgrown on a GaAs substrate by molecular-beam epitaxy. The active region includedfive layers of self-assembled InAs QDs separated with a GaAs spacer from a5.3nm thick covering layer of InGaAs and processed into 4mm-wide mesa stripe devices. The 2.5mm long lasers withhigh-and antireflection coatings on the rear and front facets lasesimultaneously at the GS (around 1265nm) and ES (around 1190nm) in the wholerange of pumping. Pulsed electrical pumping obtained from a high power (up to2A current) pulse source was used to achieve high output power operation. We simultaneously detect the total output and merely ES output using aBragg filter transmitting the short-wavelength and reflecting the long-wavelengthradiation. Typical QD does not demonstrate relaxation oscillations frequencybecause of the strong damping [2]. It is confirmed for the low (I<0.68A) andhigh (I>1.2 A) range of the pump currents in our experiments. The situationis different for a short range of the medium currents (0.68A