127 resultados para Norreys


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Collimated transport of fast electron beam through solid density matter is one of the key issues behind the success of the fast ignition scheme by means of which the required amount of ignition energy can be delivered to the hot spot region of the compressed fuel. Here we report on a hot electron beam collimation scheme in solids by tactfully using the strong magnetic fields generated by an electrical resistivity gradient according to Faraday's law. This was accomplished by appropriately fabricating the targets in such a way that the electron beam is directed to flow in a metal which is embedded in a much lower resistivity and atomic number metal. Experimental results showed guided transport of hot electron beam over hundreds of microns length inside solid density plasma, which were obtained from two experiments examining the scheme for petawatt laser driven hot electron beam while employing various target configurations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fast electron energy spectra have been measured for a range of intensities between 1018 Wcm−2 and 1021 Wcm−2 and for different target materials using electron spectrometers. Several experimental campaigns were conducted on peta watt laser facilities at the Rutherford Appleton Laboratory and Osaka University. In these experimental campaigns, the pulse duration was varied from 0.5 ps to 5 ps. The laser incident angle was also changed from normal incidence to 40° in p-polarized. The results show a reduction from the ponderomotive scaling on fast electrons over 1020 Wcm−2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The most established route to create a laser-based neutron source is by employing laser accelerated, low atomic-number ions in fusion reactions. In addition to the high reaction cross-sections at moderate energies of the projectile ions, the anisotropy in neutron emission is another important feature of beam-fusion reactions. Using a simple numerical model based on neutron generation in a pitcher–catcher scenario, anisotropy in neutron emission was studied for the deuterium–deuterium fusion reaction. Simulation results are consistent with the narrow-divergence ( ∼ 70 ° full width at half maximum) neutron beam recently served in an experiment employing multi-MeV deuteron beams of narrow divergence (up to 30° FWHM, depending on the ion energy) accelerated by a sub-petawatt laser pulse from thin deuterated plastic foils via the Target Normal Sheath Acceleration mechanism. By varying the input ion beam parameters, simulations show that a further improvement in the neutron beam directionality (i.e. reduction in the beam divergence) can be obtained by increasing the projectile ion beam temperature and cut-off energy, as expected from interactions employing higher power lasers at upcoming facilities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Channel formation during the propagation of a high-energy (120 J) and long duration (30 ps) laser pulse through an underdense deuterium plasma has been spatially and temporally resolved via means of a proton imaging technique, with intrinsic resolutions of a few micron and a few ps, respectively. Conclusive proof is provided that strong azimuthally symmetric magnetic fields with a strength of around 0.5 MG are created inside the channel, consistent with the generation of a collimated beam of
relativistic electrons. The inferred electron beam characteristics may have implications for the cone-free fast-ignition scheme of inertial confinement fusion